《概率论与数理统计》课程教案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《概率论与数理统计》课程教案.docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计 概率论 数理统计 课程 教案
- 资源描述:
-
1、概率论与数理统计课程教案主讲教师_ 所在单位_授课班级_ 专业_ 撰写时间_教案编号24-0901教案内容概率统计数值实验学时2教学目标基本要求(1)掌握离散型随机变量和连续型随机变量各种常见分布随机数的生成算法,能借助Matlab软件产生各种分布的随机数函数;(2)能借助Matlab软件求解一些简单的应用概率问题的数值模拟解;(3)能借助Matlab软件完成有关随机变量的分布拟合和参数估计的求解。本内容可在实验室边讲边练;亦可在课堂上讲方法,课后学生自行练习,以平时作业处理,但不作考试要求。能力要求1. 培养能力要求:a) 掌握概率论和数理统计中的基本概念和性质并能够运用到复杂工程问题的适当
2、表述之中;b) 能够针对工程应用系统或过程的特点选择合适的概率分布来描述随机现象的统计规律性;教学重点常见分布随机数的生成算法;应用Matlab软件作简单概率问题的随机模拟思想与方法;应用Matlab软件求解随机变量分布参数及分布拟合检验的过程。教学难点常见分布随机数函数的生成思想。教学方法提问、讲授、启发、讨论、实验工具仪器多媒体教具、教材、教案、教学课件、考勤表、平时成绩登记表、Matlab软件教学安排考勤、复习相关知识点、新课内容概述、组织教学、布置作业、课后小结教学过程教学组织、具体教学内容及教学方法、手段、时间分配及其它说明备 注第一部分:古典概型实验(30分钟)内容介绍MATLAB
3、常用的及与随机数产生相关的函数实验1:计算超几何分布实验2:频率稳定性实验实验3:利用频率估计自然对数底e实验4:蒲丰投针实验,利用频率估计圆周率p实验5:生日悖论实验利用MATLAB 软件的图形可视功能将概率统计的内容用图形表示出来,以加深对概率的理解MATLAB常用的及与随机数产生相关的函数l factorial(n) :阶乘,n!,可通过阶乘来计算排列组合数l 1.rand(m,n):生成mn的随机矩阵,每个元素都在(0,1)间,生成方式为均匀分布。l 2.randn(m,n):生成mn的随机矩阵,每个元素都在(0,1)间,生成方式为正态分布l 3.randperm(m):生成一个1m的
4、随机整数排列l 4.perms(1:n):生成一个1n的全排列,共n!个l 5.取整函数系列:(1)fix(x):截尾法取整;(2)floor(x):退一法取整(不超过x的最大整数);向负方向舍入(3)ceil(x):进一法取整(= floor(x)+1); 向正方向舍入(4)round(x):四舍五入法取整。l 6.unique(a):合并a中相同的项l 7.prod(x):向量x的所有分量元素的积示例: rand(1) %生成一个(0,1)间的随机数 ans = 0.8147 rand(2,2) %生成一个22阶(0,1)间的随机数矩阵ans = 0.9134 0.0975 0.6324
5、0.2785 randperm(5) %生成一个15的随机整数排列ans = 4 1 5 2 3 a=1 2 4 2 3 3 2;unique(a)ans = 1 2 3 4实验 1:计算超几何分布的结果l 设有N件产品,其中D件次品,今从中任取n件l 问其中恰有k(kD)件次品的概率是多少?l (令N=10,D=3,n=4,k=2)解:编辑组合函数zuhe.m文件l function y=Com(n,r)l y=factorial(n)/(factorial(r)*factorial(n-r)计算如下:l N=10; D=3; n=4; k=2;l p=Com(3,2)*Com(10-3,4
6、-2)/Com(10,4)=0.3实验2 频率稳定性实验l 随机投掷均匀硬币,观察国徽朝上与国徽朝下的频率解l n= 3000;m=0; l for i=1:nl t=randperm(2); %生成一个12的随机整数排列l x=t-1; %生成一个01的随机整数排列l y=x(1); %取x排列的第一个值l if y=0;l m=m+1;l endl endl p1=m/nl p2=1-p1可见当n时,fnA=P(A)实验3 用频率估计自然对数el 某班有n个人,每人各有一支枪,这些枪外形一样。某次夜间紧急集合,若每人随机地取走一支枪,求没有一个人拿到自己枪的概率?解:记事件Ai为第i个人拿
7、到自已枪,事件Ai为第i个人没拿到自己枪,易知:l PAi=1n;PAi=n-1n,(i=1,2,n)l 又记 p0为没有一个人拿到自己枪的概率。p0=PA1A2An=1-P(i=1nAi)l 由乘法公式可知PAiAj=PAiPAjAi=1nn-11ijnPAiAjAk=PAkPAiAjAk=1nn-1(n-2)(1ijkn) PA1A2A3An=1n! 于是i=1nPAi=1,1ijnnPAiAj=Cn2nn-11ij m=40000;n=50;t=0;for j=1:m k=0; sui=randperm(n); for i=1:n if sui(i)=i k=k+1; else k=k;
8、 end end if k=0 t=t+1; else t=t; endende=m/te = 2.7313实验4:蒲丰(Buffon)投针实验,用频率估计p值l 在画有许多间距为d的等距平行线的白纸上,随机投掷一根长为l(ld)的均匀直针,求针与平行线相交的概率,并计算p的近似值解:设针与平行线的夹角为a(0ap),针的中心与最近直线的距离为x(0xd/2)。针与平行线相交的充要条件是x(l/2)sina ,这里x(0xd/2并且0ap。建立直角坐标系,上述条件在坐标系下将是曲线所围成的曲边梯形区域,总的区域即x和a所有可能取值构成的矩形区域,且所有可能取值是机会均等的,符合几何概型,则所求
9、概率为p=g的面积G的面积=0l2sindd2=2ldmn故可得p的近似计算公式 2nlmd ,其中n为随机试验次数,m为针与平行线相交的次数。解 l clear,clfl n=;l=0.5;m=0;d=1;l for i=1:nl x=(l/2)*sin(rand(1)*pi); y=rand(1)*d/2;l if x=yl m=m+1;l endl endl p1=m/nl pai=2*n*l/(m*d)实验5 生日悖论实验l 在100个人的团体中,不考虑年龄差异,研究是否有两个以上的人生日相同。假设每人的生日在一年365天中的任意一天是等可能的,那么随机找n个人(不超过365人)。l
10、(1)求这n个人生日各不相同的概率是多少?从而求这n个人中至少有两个人生日相同这一随机事件发生的概率是多少?l (2)近似计算在30名学生的一个班中至少有两个人生日相同的概率是多少解: (1)l clear,clfl for n=1:100l p0(n)=prod(365:-1:365-n+1)/365n;l p1(n)=1-p0(n);l endl p1=ones(1,100)-p0;l n=1:100;l plot(n,p0,n,p1,-)l xlabel(人数),ylabel(概率)l legend(生日各不相同的概率,至少两人生日相同的概率)l axis(0 100 -0.1 1.19
11、9),grid onp1(30)=0.7063, p1(60)= 0.9941(2) 在30名学生中至少两人生日相同的概率为70.63。下面进行计算机仿真。l 随机产生30个正整数,代表一个班30名学生的生日,然后观察是否有两人以上生日相同。当30个人中有两人生日相同时,输出“1”,否则输出“0”。如此重复观察100次,计算出这一事件发生的频率f100l clear,clfl n=0;l for m=1:100 %做100次随机试验l y=0;l x=1+fix(365*rand(1,30); %产生30个随机数l for i=1:29 %用二重循环寻找30个随机数 中是否有相同数l for
12、j=i+1:30l if x(i)=x(j)l y=1;break;l end l endl end l n=n+y; %累计有两人生日相同的试验次数l endl f=n/m %计算频率第二部分:随机变量及其分布(50分钟)内容介绍1. MATLAB中概率分布函数2. 二项分布实验3. 泊松分布实验4. 二项分布与泊松分布关系实验5. 连续型随机变量分布实验6. 随机变量的均值与方差7. 逆累积分布函数实验8. 中心极限定理实验1. MATLAB中概率分布函数MATLAB为常见自然概率分布提供了下列5类函数l 概率密度函数(pdf),求随机变量X在x点处的概率密度值l 累积分布函数(cdf),
13、求随机变量X在x点处的分布函数值l 逆累积分布函数(inv),求随机变量X在概率点a处的分布函数反函数值l 均值与方差计算函数(stat),求给定分布的随机变量X的数学期望E(X)和方差var(X)l 随机数生成函数(rnd),模拟生成指定分布的样本数据(调用格式:x=分布rnd(分布参数),如x=normrnd(0,1)常见的分布类型名如下具体函数的命名规则是:l 函数名分布类型名称+函数类型名称(pdf、cdf、inv、stat、rnd)例如,normpdf、normcdf、norminv、normstat和normrnd分别是正态分布的概率密度、累积分布、逆累积分布、数字特征和随机数生成
14、函数。关于这5类函数的语法,请详见有关书籍l 快捷的学习可借助MATLAB的系统帮助,通过指令doc获得具体函数的详细信息,语法是 doc 2. 二项分布实验已知Yb(20, 0.3)求Y分布率的值,并划出图形在Matlab中输入以下命令:l binopdf(10,20,0.2)l x=0:1:20; l y=binopdf(x,20,0.2)l plot(x,y,r.)结果:ans = 0.0020y =0.0115 0.0576 0.1369 0.2054 0.2182 0.1746 0.1091 0.0545 0.0222 0.0074 0.0020 0.0005 0.0001 0.00
15、00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000已知Yb(20, 0.3)求Y分布函数的值,画出函数图像在Matlab中输入以下命令:l binocdf(10,20,0.2)l x=0:1:20; l y=binocdf(x,20,0.2)l ezplot(binocdf(t,20,0.3),0,20)结果:ans = 0.9994y = 0.0115 0.0692 0.2061 0.4114 0.6296 0.8042 0.9133 0.9679 0.9900 0.9974 0.9994 0.9999 1.0000 1.0000 1.00
16、00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000到某服务机构办事总是要排队等待的。设等待时间T是服从指数分布的随机变量(单位:分钟),概率密度为ft=110e-t10 t0 0 t p=1-expcdf(15,10) %任一次离去的概率 p1=binopdf(2,10,p) %恰有两次离去的概率 q=binopdf(0:2,10,p);p2=sum(q) %最多有两次离去的概率 q=binopdf(0:1,10,p);p3=1-sum(q) %最少有两次离去的概率 q=binopdf(0:5,10,p);p4=1-sum(q) %离去的次数占多数的概率l
17、 p = 0.2231l p1 = 0.2972l p2 = 0.6073l p3 = 0.6899l p4 = 0.01123. 泊松分布实验假设电话交换台每小时接到的呼叫次数X服从参数l=3的泊松分布,求l (1) 每小时恰有4次呼叫的概率 l (2) 一小时内呼叫不超过5次的概率l (3) 画出分布律图像PX=4=44!e-=344!e-3PX5=k=05P(X=k=k=053kk!e-3在Matlab中输入以下命令:(1)p1= poisspdf(4,3)(2)p2= poisscdf(5,3)(3)x=0:1:20;y=poisspdf(x,3);plot(x,y)4. 二项分布与泊
18、松分布关系实验二项分布与泊松分布的关系例7:Xb(200,0.02),Y 服从参数为4的泊松分布,划出分布率图像l x=0:20;l y1=binopdf(x,200,0.02);l y2=poisspdf(x,4);l plot(x,y1,r.,x,y2,b.)泊松定理 l (用泊松分布来逼近二项分布的定理) 设0是一个常数,n是任意正整数,设npn,则对于任意固定的非负整数k,有limnnkpnk(1-pn)n-k=ke-k!例9 某种重大疾病的医疗险种,每份每年需交保险费100元,若在这一年中,投保人得了这种疾病,则每份可以得到索赔额10000元,假设该地区这种疾病的患病率为0.0002
展开阅读全文