(完整版)紫外—可见分光光度法教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)紫外—可见分光光度法教案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 紫外 可见 分光光度法 教案
- 资源描述:
-
1、第五章 紫外可见分光光度法一教学内容1 紫外可见吸收光谱的产生(分子的能级及光谱、有机物及无机物电子能级跃迁的类型和特点)2 吸收定律及其发射偏差的原因3 仪器类型、各部件的结构、性能以及仪器的校正4 分析条件的选择5 应用(定性及结构分析、定量分析的各种方法、物理化学常数的测定及其它方面的应用二重点与难点1 比较有机化合物和无机化合物各种电子跃迁类型所产生吸收带的特点及应用价值2 进行化合物的定性分析、结构判断3 定量分析的新技术(双波长法、导数光谱法、动力学分析法)4 物理化学常数的测定三教学要求1 较为系统、深入地掌握各种电子跃迁所产生的吸收带及其特征、应用2 熟练掌握吸收定律的应用及测
2、量条件的选择3 较为熟练仪器的类型、各组件的工作原理4 运用各种类型光谱及的经验规则,判断不同的化合物5 掌握定量分析及测定物理化学常数的常见基本方法6 一般掌握某些新的分析技术四学时安排 5学时 研究物质在 紫外、可见光区 的分子吸收光谱 的分析方法称为紫外-可见分光光度法。紫外可见分光光度法是利用某些物质的分子吸收200 800 nm光谱区的辐射来进行分析测定的方法。这种分子吸收光谱产生于价电子和分子轨道上的电子 在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。第一节 紫外可见吸收光谱一、分子吸收光谱的产生 在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转
3、动。这三种运动能量都是量子化的,并对应有一定能级。在每一电子能级上有许多间距较小的振动能级,在每一振动能级上又有许多更小的转动能级。 若用E电子、 E振动、 E转动分别表示电子能级、振动能级转动能级差,即有 E电子 E振动 E转动。处在同一电子能级的分子,可能因其振动能量不同,而处在不同的振动能级上。当分子处在同一电子能级和同一振动能级时,它的能量还会因转动能量不同,而处在不同的转动能级上。所以分子的总能量可以认为是这三种能量的总和: E分子 = E电子 + E振动 + E转动 当用频率为n的电磁波照射分子,而该分子的较高能级与较低能级之差 E恰好等于该电磁波的能量 hn时,即有 E = hn
4、 ( h为普朗克常数) 此时,在微观上出现分子由较低的能级跃迁到较高的能级;在宏观上则透射光的强度变小。若用一连续辐射的电磁波照射分子,将照射前后光强度的变化转变为电信号,并记录下来,然后以波长为横坐标,以电信号(吸光度 A)为纵坐标,就可以得到一张光强度变化对波长的关系曲线图分子吸收光谱图。二、分子吸收光谱类型 根据吸收电磁波的范围不同,可将分子吸收光谱分为远红外光谱、红外光谱及紫外、可见光谱三类。 分子的转动能级差一般在0.005 0.05eV。产生此能级的跃迁,需吸收波长约为250 25mm的远红外光,因此,形成的光谱称为转动光谱或远红外光谱。 分子的振动能级差一般在0.05 1 eV,
5、需吸收波长约为25 1.25mm的红外光才能产生跃迁。在分子振动时同时有分子的转动运动。这样,分子振动产生的吸收光谱中,包括转动光谱,故常称为振-转光谱。由于它吸收的能量处于红外光区,故又称红外光谱。电子的跃迁能差约为1 20 eV,比分子振动能级差要大几十倍,所吸收光的波长约为12.5 0.06mm,主要在真空紫外到可见光区,对应形成的光谱,称为电子光谱或紫外、可见吸收光谱。 通常,分子是处在基态振动能级上。当用紫外、可见光照射分子时,电子可以从基态激发到激发态的任一振动(或不同的转动)能级上。因此,电子能级跃迁产生的吸收光谱,包括了大量谱线,并由于这些谱线的重叠而成为连续的吸收带,这就是为
6、什么分子的紫外、可见光谱不是线状光谱,而是带状光谱的原因。又因为绝大多数的分子光谱分析,都是用液体样品,加之仪器的分辨率有限,因而使记录所得电子光谱的谱带变宽。 由于氧、氮、二氧化碳、水等在真空紫外区(60 200 nm)均有吸收,因此在测定这一范围的光谱时,必须将光学系统抽成真空,然后充以一些惰性气体,如氦、氖、氩等。鉴于真空紫外吸收光谱的研究需要昂贵的真空紫外分光光度计,故在实际应用中受到一定的限制。我们通常所说的紫外可见分光光度法,实际上是指近紫外、可见分光光度法。 第二节 化合物紫外可见光谱的产生 在紫外和可见光谱区范围内,有机化合物的吸收带主要由ss*、pp*、ns*、np*及电荷迁
7、移跃迁产生。无机化合物的吸收带主要由电荷迁移和配位场跃迁(即dd跃迁和ff跃迁)产生. 由于电子跃迁的类型不同,实现跃迁需要的能量不同,因此吸收光的波长范围也不相同。其中ss*跃迁所需能量最大,np*及配位场跃迁所需能量最小,因此,它们的吸收带分别落在远紫外和可见光区。从图中 可知,pp*(电荷迁移)跃迁产生的谱带强度最大,ss*、np*、ns*跃迁产生的谱带强度次之,(配位跃迁的谱带强度最小)。一、有机化合物的紫外可见吸收光谱(一)、跃迁类型 基态有机化合物的价电子包括成键s电子、成键p电子和非键电子(以 n表示)。分子的空轨道包括反键 s*轨道和反键p*轨道,因此,可能的跃迁为ss*、pp
8、*、ns* np*等。 1,ss*跃迁 它需要的能量较高,一般发生在真空紫外光区。饱和烃中的cc键属于这类跃迁,例如乙烷的最大吸收波长lmax为135nm。 2,ns*跃迁 实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区,如CH3OH和CH3NH2的ns*跃迁光谱分别为183nm和213nm。 3,pp*跃迁 它需要的能量低于ss*跃迁,吸收峰一般处于近紫外光区,在200 nm左右,其特征是摩尔吸光系数大,一般emax104,为强吸收带。如乙烯(蒸气)的最大吸收波长lmax为162 nm。 4,np*跃迁 这类跃迁发生在近紫外光区。它是简单的生色团如羰基、硝基等中的孤对电子
9、向反键轨道跃迁。其特点是谱带强度弱,摩尔吸光系数小,通常小于100,属于禁阻跃迁。 5,电荷迁移跃迁 所谓电荷迁移跃迁是指用电磁辐射照射化合物时,电子从给予体向与接受体相联系的轨道上跃迁。因此,电荷迁移跃迁实质是一个内氧化还原的过程,而相应的吸收光谱称为电荷迁移吸收光谱。例如某些取代芳烃可产生这种分子内电荷迁移跃迁吸收带。 电荷迁移吸收带的谱带较宽,吸收强度较大,最大波长处的摩尔吸光系数emax可大于104。(二)、常用术语1,生色团 从广义来说,所谓生色团,是指分子中可以吸收光子而产生电子跃迁的原子基团。但是,人们通常将能吸收紫外、可见光的原子团或结构系统定义为生色团。 2,助色团 助色团是
10、指带有非键电子对的基团,如-OH、 -OR、 -NHR、-SH、-Cl、-Br、-I等,它们本身不能吸收大于200nm的光,但是当它们与生色团相连时,会使生色团的吸收峰向长波方向移动,并且增加其吸光度。3,红移与蓝移(紫移) 某些有机化合物经取代反应引入含有未共享电子对的基团( -OH、 -OR、 -NH2、-SH 、-Cl、-Br、-SR、- NR2 )之后,吸收峰的波长将向长波方向移动,这种效应称为红移效应。这种会使某化合物的最大吸收波长向长波方向移动的基团称为向红基团。 在某些生色团如羰基的碳原子一端引入一些取代基之后,吸收峰的波长会向短波方向移动,这种效应称为蓝移(紫移)效应。这些会使
11、某化合物的最大吸收波长向短波方向移动的基团(如-CH2、-CH2CH3、-OCOCH3)称为向蓝(紫)基团。(三)有机化合物紫外-可见吸收光谱1,饱和烃及其取代衍生物 饱和烃类分子中只含有s键,因此只能产生ss*跃迁,即s电子从成键轨道( s )跃迁到反键轨道( s *)。饱和烃的最大吸收峰一般小于150nm,已超出紫外、可见分光光度计的测量范围。 饱和烃的取代衍生物如卤代烃,其卤素原子上存在n电子,可产生ns* 的跃迁。 ns* 的能量低于ss*。例如,CH3Cl、CH3Br和CH3I的ns* 跃迁分别出现在173、204和258nm处。这些数据不仅说明氯、溴和碘原子引入甲烷后,其相应的吸收
12、波长发生了红移,显示了助色团的助色作用。直接用烷烃和卤代烃的紫外吸收光谱分析这些化合物的实用价值不大。但是它们是测定紫外和(或)可见吸收光谱的良好溶剂。2,不饱和烃及共轭烯烃 在不饱和烃类分子中,除含有s键外,还含有p键,它们可以产生ss*和pp*两种跃迁。 pp*跃迁的能量小于 ss*跃迁。例如,在乙烯分子中, pp*跃迁最大吸收波长为180nm 在不饱和烃类分子中,当有两个以上的双键共轭时,随着共轭系统的延长, pp*跃迁的吸收带 将明显向长波方向移动,吸收强度也随之增强。在共轭体系中, pp*跃迁产生的吸收带又称为K带。 3,羰基化合物 羰基化合物含有C=O基团。 C=O基团主要可产生p
13、p*、 ns* 、np*三个吸收带, np*吸收带又称R带,落于近紫外或紫外光区。醛、酮、羧酸及羧酸的衍生物,如酯、酰胺等,都含有羰基。由于醛酮这类物质与羧酸及羧酸的衍生物在结构上的差异,因此它们np*吸收带的光区稍有不同。 羧酸及羧酸的衍生物虽然也有np*吸收带,但是, 羧酸及羧酸的衍生物的羰基上的碳原子直接连结含有未共用电子对的助色团,如-OH、-Cl、-OR等,由于这些助色团上的n电子与羰基双键的p电子产生np共轭,导致p*轨道的能级有所提高,但这种共轭作用并不能改变n轨道的能级,因此实现np* 跃迁所需的能量变大,使np*吸收带蓝移至210nm左右。4,苯及其衍生物 苯有三个吸收带,它
14、们都是由pp*跃迁引起的。E1带出现在180nm(eMAX = 60,000); E2带出现在204nm( eMAX = 8,000 );B带出现在255nm (eMAX = 200)。在气态或非极性溶剂中,苯及其许多同系物的B谱带有许多的精细结构,这是由于振动跃迁在基态电子上的跃迁上的叠加而引起的。在极性溶剂中,这些精细结构消失。当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化,其中影响较大的是E2带和B谱带。5,稠环芳烃及杂环化合物 稠环芳烃,如奈、蒽、芘等,均显示苯的三个吸收带,但是与苯本身相比较,这三个吸收带均发生红移,且强度增加。随着苯环数目的增多,吸收波长红移越多,吸收强度也
15、相应增加。 当芳环上的-CH基团被氮原子取代后,则相应的氮杂环化合物(如吡啶、喹啉)的吸收光谱,与相应的碳化合物极为相似,即吡啶与苯相似,喹啉与奈相似。此外,由于引入含有n电子的N原子的,这类杂环化合物还可能产生np*吸收带。二、无机化合物的紫外-可见吸收光谱 产生无机化合物紫外、可见吸收光谱的电子跃迁形式,一般分为两大类:电荷迁移跃迁和配位场跃迁。(一)电荷迁移跃迁 无机配合物有电荷迁移跃迁产生的电荷迁移吸收光谱。 在配合物的中心离子和配位体中,当一个电子由配体的轨道跃迁到与中心离子相关的轨道上时,可产生电荷迁移吸收光谱。 不少过度金属离子与含生色团的试剂反应所生成的配合物以及许多水合无机离
16、子,均可产生电荷迁移跃迁。 此外,一些具有d10电子结构的过度元素形成的卤化物及硫化物,如AgBr、HgS等,也是由于这类跃迁而产生颜色。 电荷迁移吸收光谱出现的波长位置,取决于电子给予体和电子接受体相应电子轨道的能量差。(二)配位场跃迁 配位场跃迁包括d - d 跃迁和f - f 跃迁。元素周期表中第四、五周期的过度金属元素分别含有3d和4d轨道,镧系和锕系元素分别含有4f和5f轨道。在配体的存在下,过度元素五 个能量相等的d轨道和镧系元素七个能量相等的f轨道分别分裂成几组能量不等的d轨道和f轨道。当它们的离子吸收光能后,低能态的d电子或f电子可以分别跃迁至高能态的d或f轨道,这两类跃迁分别
17、称为d - d 跃迁和f - f 跃迁。由于这两类跃迁必须在配体的配位场作用下才可能发生,因此又称为配位场跃迁。三、溶剂对紫外、可见吸收光谱的影响 溶剂对紫外可见光谱的影响较为复杂。改变溶剂的极性,会引起吸收带形状的变化。例如,当溶剂的极性由非极性改变到极性时,精细结构消失,吸收带变向平滑。 改变溶剂的极性,还会使吸收带的最大吸收波长发生变化。下表为溶剂对亚异丙酮紫外吸收光谱的影响。 正己烷 CHCl3 CH3OH H2O pp* lmax/nm 230 238 237 243 n p*lmax/nm 329 315 309 305 由上表可以看出,当溶剂的极性增大时,由n p* 跃迁产生的吸
18、收带发生蓝移,而由pp* 跃迁产生的吸收带发生红移。因此,在测定紫外、可见吸收光谱时,应注明在何种溶剂中测定。 由于溶剂对电子光谱图影响很大,因此,在吸收光谱图上或数据表中必须注明所用的溶剂。与已知化合物紫外光谱作对照时也应注明所用的溶剂是否相同。在进行紫外光谱法分析时,必须正确选择溶剂。选择溶剂时注意下列几点:(1)溶剂应能很好地溶解被测试样,溶剂对溶质应该是惰性的。即所成溶液应具有良好的化学和光化学稳定性。 (2)在溶解度允许的范围内,尽量选择极性较小的溶剂。(3)溶剂在样品的吸收光谱区应无明显吸收。第三节 紫外-可见分光光度计一、组成部件 紫外-可见分光光度计的基本结构是由五个部分组成:
19、即光源、单色器、吸收池、检测器和信号指示系统。(一)光源 对光源的基本要求是应在仪器操作所需的光谱区域内能够发射连续辐射,有足够的辐射强度和良好的稳定性,而且辐射能量随波长的变化应尽可能小。 分光光度计中常用的光源有热辐射光源和气体放电光源两类。 热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340 2500nm。这类光源的辐射能量与施加的外加电压有关,在可见光区,辐射的能量与工作电压4次方成正比。光电流与灯丝电压的n次方(n1)成正比。因此必须严格控制灯丝电压,仪器必须配有稳压装置。 在近紫外区测定时常用氢灯和氘灯。它们可在160
20、 375 nm范围内产生连续光源。氘灯的灯管内充有氢的同位素氘,它是紫外光区应用最广泛的一种光源,其光谱分布与氢灯类似,但光强度比相同功率的氢灯要大35倍。(二)单色器 单色器是能从光源辐射的复合光中分出单色光的光学装置,其主要功能:产生光谱纯度高的波长且波长在紫外可见区域内任意可调。 单色器一般由入射狭缝、准光器(透镜或凹面反射镜使入射光成平行光)、色散元件、聚焦元件和出射狭缝等几部分组成。其核心部分是色散元件,起分光的作用。单色器的性能直接影响入射光的单色性,从而也影响到测定的灵敏度度、选择性及校准曲线的线性关系等。 能起分光作用的色散元件主要是棱镜和光栅。 棱镜有玻璃和石英两种材料。它们
21、的色散原理是依据不同的波长光通过棱镜时有不同的折射率而将不同波长的光分开。由于玻璃可吸收紫外光,所以玻璃棱镜只能用于350 3200 nm的波长范围,即只能用于可见光域内。石英棱镜可使用的波长范围较宽,可从185 4000nm,即可用于紫外、可见和近红外三 个光域。 光栅是利用光的衍射与干涉作用制成的,它可用于紫外、可见及红外光域,而且在整个波长区具有良好的、几乎均匀一致的分辨能力。它具有色散波长范围宽、分辨本领高、成本低、便于保存和易于制备等优点。缺点是各级光谱会重叠而产生干扰。入射、出射狭缝,透镜及准光镜等光学元件中狭缝在决定单色器性能上起重要作用。狭缝的大小直接影响单色光纯度,但过小的狭
展开阅读全文