(完整版)全等三角形教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)全等三角形教案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 全等 三角形 教案
- 资源描述:
-
1、全等三角形教案教学内容:全等三角形的复习课程目标:1、回顾全等三角形的定义、性质和判定 2、会按照规定书写全等三角形的证明过程 3、了解中考中全等三角形的相关例题,并学会用辅助线合理构造全等三角形。教学重点:全等三角形证明的书写格式,合理构造全等三角形。教学难点:通过条件寻找全等关系,或构造全等关系。教学准备:ppt课件学情分析:该部分内容为初三中考前的复习,学生对内容已经比较了解,只需要加强记忆和巩固复习。同时也需要学生把握中考动态,了解全等三角形在中考中的出题类型。教学过程: 前面我们已经对三角形的性质和特点进行了专门的复习,那么今天我们要对两个三角形的关系三角形的全等关系进行复习。我们都
2、知道两个三角形能都完全重合我们就说这两个三角形全等,而在实际应用中全等的三角形往往是通过平移或旋转得到。既然能够重合,那么我们也就得到三角形的性质是对应边相等,对应角也相等。而在这六个关系中我们只需要得到指定的三种等量关系就可以判定两个三角形全等。那我们一起来看看书上57页,一起完成知识梳理的内容。一、知识梳理:(该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。时间为3分钟)1、全等三角形: 能够完全重合 的三角形叫全等三角形。2、三角形全等的判定方法: SSS 、 SAS 、 ASA 、 AAS 。直角三角形全等的判定除以上的方法还有 HL 。3、全等三角形的性质:全等三角形 对应
3、边相等 、 对应角也相等 。4、全等三角形的面积 相等 、周长 相等 、对应高、 对应边的中线 、 对应角的角平分线 相等。DCBA二、预习自测:(该部分内容由学生自行完成,时间为2分钟)1、如图下列条件中,不能证明ABDACD的是( D )A.BD=DC,AB=AC B.ADB=ADC,BD=DCC.B=C, BAD=CAD D. B=C,BD=DCABDCO2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:ACBD;AO=CO=AC;ABDCBD,其中正确的结论有( D )A.0个 B.1个 C.2
4、个 D.3个三、典例分析:例1、(该题比较容易,由教师引导解题思路学生自行解答,不在课堂安排时间)已知:在四边形ABCD中ABCD,E是BC的中点,直线AE与DC的延长线交于点F.求证:AB=CF.分析:求证CFEBAE例2、(该题将作为本节课一道证明三角形全等的典型例题进行分析,主要要求学生在证明题过程书写时符合规范,时间设计为3分钟)ACEDB12如图。AC=AE,1=2,AB=AD.求证:BC=DE.证明:1=2 1+BAE =2+BAE 则CAB=EAD 又AC=AE, AB=ADCABEAD(SAS)BDCFEA所以BC=DE.三、合作交流:(该部分内容由学生自主练习,请两位同学分别
展开阅读全文