人教版中职数学教案第八章直线和圆的方程[份教案]DOC.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版中职数学教案第八章直线和圆的方程[份教案]DOC.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 份教案 人教版中职 数学教案 第八 直线 方程 教案 DOC
- 资源描述:
-
1、8.1.1 数轴上的距离公式与中点公式【教学目标】1. 理解数轴上的点与实数之间的一一对应关系,会表示数轴上某一点的坐标2. 掌握数轴上的距离公式和中点公式,并能用这两个公式解决有关问题3. 培养学生勇于发现、勇于探索的精神;培养学生合作交流等良好品质【教学重点】数轴上的距离公式、中点公式【教学难点】距离公式与中点公式的应用【教学方法】 这节课主要采用问题解决法和分组教学法先从数轴入手,在使学生进一步明确了数与数轴上的点的一一对应关系后,给出数轴上点的坐标的定义及记法,在此基础上进一步学习数轴上距离公式及中点公式本节教学中,始终要坚持数形结合的思想和方法,让学生积极大胆的猜想,在探索过程中发现
2、和归纳两个公式,以此增强学生的参与意识,提高学生的学习兴趣【教学过程】环节教学内容师生互动设计意图引入1数轴x0123412342数轴上的点与实数是对应的师:人类早期用石子来记数,但是石子记数不能移动,无法携带,于是人们又想到了用结绳等方法记数我国古书易经上记载有“结绳记数”的历史,即在一根长绳上打上结表示数随着社会的进步,记数的方法也越来越准确、科学到了17世纪,法国数学家笛卡儿发明了用直线和直线上的点来表示数的方法,这就是我们现在仍在沿用的数轴表示数的方法师:数轴的三要素是什么?学生回答,教师展示数轴通过引入激发学生学习的兴趣新课新课新课1. 数轴上点的坐标x012341234P在数轴上,
3、如果点P与x对应,则称点P的坐标为x,记作P(x)练习一观察数轴,完成下列题目:x012341234PBAO(1)点P与3.5对应,则点P的坐标是,记作;(2)点A的坐标是,记作;(3)点B的坐标是,记作;(4)点O的坐标是,记作2. 数轴上的距离公式探究一x012341234CADB如图,填空:(1)图中点A的坐标是,B的坐标是,C的坐标是,点D的坐标是;(2)点A与B之间的距离|AB|= ,点C与A之间的距离|CA|= ,点B与C之间的距离|BC|= ;(3)你能找出数轴上两点间距离与两个点坐标之间的关系吗? 一般地,如果A(x1),B(x2),则这两点的距离公式为|AB|=|x2x1|探
4、究二y012341234AB 在以上例子中,我们遇到的数轴都是水平放置的,如果数轴不是水平放置的(如下图所示),数轴上的距离公式成立吗?x012341234AB试求两个图中点A与B之间的距离3. 数轴上的中点公式探究三x012123CAD根据下图回答问题:(1)点A(1),C(3)的中点坐标是多少?中点坐标与A,C两点的坐标有怎样的关系?(2)点A(1),D(1)的中点坐标是多少?中点坐标与A,D两点的坐标有怎样的关系?一般地,在数轴上,A(x1),B(x2)的中点坐标x满足关系式x 4. 应用例已知点A(3),B(5),求:(1)|AB|;(2)A,B两点的中点坐标解 (1)|AB|5(3)
5、|8;(2)设点M(x)是A,B两点的中点,则x 1即A,B的中点坐标为1练习二已知点A(6),B(1),C(2),D(4.5),E(7),求:(1)|AB|,|AC|,|BD|,|DE|;(2)A,B的中点坐标,B,E的中点坐标师:平面上我们用一对有序实数来表示一个点的位置,在数轴上,我们应当怎么表示一个点的位置呢?学生思考问题教师投影,给出数轴上点的坐标的定义及记法学生理解概念,教师强调记法请同学们结合定义抢答下列问题学生回答,教师点评教师投影提出问题,学生分组讨论探究教师巡视第 (2) 题主要是引导学生从图象上直观地求距离学生在尝试解决问题 (3) 的过程中,使认知得到升华在探究的基础上
6、,教师给出数轴上两点的距离公式教师提出问题,学生观察并尝试解决师:不管数轴在平面上怎么放置,两点间的距离公式是不变的教师投影提出问题,学生分组讨论探究教师巡视学生在尝试解决问题的过程中,探究中点公式在探究的基础上,教师引导学生归纳出数轴上两点的中点公式教师投影,先让学生思考,小组内合作尝试解答教师在学生思考的基础上,找个别学生回答,并给予点评小组合作完成,并采用抢答形式,提高课堂学习气氛教师针对学生的解答给予点评由二维坐标到一维坐标,似乎违反了人的认知规律,但在以往的学习中,学生对两维坐标是熟悉的通过类比平面坐标得到轴上坐标,学生容易理解强化新知识的记忆与应用,以形成学生内在的素质让学生通过小
7、组合作,在探究过程中,归纳出数轴上两点间的距离公式,形成知识的主动认知使学生由感性认知(算法)上升到理性认知(公式)探究二使学生认识到非水平放置的数轴上的两点间的距离公式是不改变的,特别是竖直放置的数轴上的距离问题,为下节解决平面直角坐标系中两点间的距离公式打下基础让学生通过小组合作,在探究过程中,归纳得出数轴上两点间的中点公式在实践中应用本节知识解决有关数轴上的距离和中点问题检验并强化本节知识的应用小结1数轴上点的坐标2数轴上两点间的距离公式3数轴上两点的中点公式回顾本节主要内容,强化一个定义及两个公式简洁明了地概括本节课的重要知识,学生易于理解记忆 作业学生标记作业针对学生实际,对课后书面
8、作业实施分层设置8.1.2 平面直角坐标系中的距离公式和中点公式【教学目标】1. 了解平面直角坐标系中的距离公式和中点公式的推导过程2. 掌握平面直角坐标系中的距离公式和中点公式,并能熟练应用这两个公式解决有关问题3. 培养学生勇于发现、勇于探索的精神以及合作交流等良好品质【教学重点】平面直角坐标系中的距离公式、中点公式【教学难点】距离公式与中点公式的应用【教学方法】 这节课主要采用问题解决法和分组教学法本节教学中,将平面(二维)的数量关系转化为轴(一维)上的数量关系是关键先从复习上节内容入手,通过构建直角三角形,将两点间的距离转化为直角三角形的斜边长,从而利用勾股定理求出两点间的距离最后讨论
9、了平面直角坐标系中的中点公式教学过程中,通过分组抢答的形式,充分调动学生的积极性【教学过程】环节教学内容师生互动设计意图引入1一般地,如果A(x1),B(x2),则这两点的距离为|AB|x2x1|2一般地,在数轴上,A(x1),B(x2)的中点坐标x满足关系式x师:上节我们学习了数轴上两点的距离公式与中点公式那么在平面直角坐标系内,已知两点A(x1,y1),B(x2,y2),如何求这两点的距离?如何计算这两点的对称中心的坐标?提出问题,激发学生的学生兴趣新课新课新课新课1. 距离公式探究一xyBACA1A2B2B1O如图,设A(x1,y1),B(x2,y2)过A,B分别向x轴、y轴作垂线AA1
10、,AA2和BB1,BB2,垂足分别为A1,A2,B1,B2,其中直线BB1和AA2相交于点C两点的距离公式|AB|探究二求两点之间的距离的计算步骤:S1给两点的坐标赋值x1?,y1?,x2?,y2?S2计算两个坐标的差,并赋值给另外两个变量,即dxx2x1,dyy2y1;S3计算d;S4给出两点的距离d例1已知A(2,4),B(2,3),求|AB|解 因为x12,x22,y14,y23,所以dxx2x1224,dyy2y13(4)7因此|AB|练习一求两点之间的距离:(1)A(6,2),B(2,5);(2)C(2,4),D(7,2)2. 中点公式探究三如图所示,若已知A(x1,y1),B(x2
11、,y2),那么怎么求它们的对称中心的坐标?xyBAA1A2B2B1OM1M2M设M(x,y)是A,B的对称中心,即线段AB的中点过A,B,M分别向x轴,y轴作垂线,AA1,AA2,BB1,BB2,MM1,MM2,垂足分别是A1,A2,B1,B2,M1,M2在平面直角坐标系内,两点A(x1,y1),B(x2,y2)的中点M(x,y)的坐标满足x,y例2求证:任意一点P(x,y)与点P(x,y)关于坐标原点成中心对称证明 设P与P的对称中心为(x0,y0),则x00,y00所以坐标原点为P与P的对称中心练习二求下列各点关于坐标原点的对称点:A(2,3), B(3,5), C(2,4),D(3,5)
12、例3已知坐标平面内的任意一点P(a,b),分别求它关于x轴的对称点P,关于y轴的对称点P的坐标xyP(a,b)OPPM练习三求下列点关于x轴和y轴的对称点坐标:A(2,3), B(3,5), C(2,4),D(3,5)例4已知平行四边形ABCD的三个顶点A(3,0),B(2,2),C(5,2),求顶点D的坐标解 因为平行四边形的两条对角线的中点相同,所以它们的坐标也相同设点D的坐标为(x,y),则解得所以顶点D的坐标为(0,4)练习四已知平行四边形ABCD的三个顶点A(0,0),B(2,4),C(6,2),求顶点D的坐标教师提出探究问题,学生根据已有的知识探究问题的解:(1)以上四个垂足的坐标
13、分别是多少?(2)|AC|与|A1B1|关系如何?如何求|A1B1|?(3)|BC|等于多少?(4)在直角三角形ABC中,如何求|AB|?(5)你能表示出|AB|吗?教师在学生探究的基础上,投影距离公式,并让学生记忆师:你能说出求平面上两点间距离的步骤吗?教师引导学生探究依据公式求两点距离的步骤教师引导学生结合求平面上两点间的距离的步骤解答学生练习,教师巡视指导教师提出要探究的问题,学生解答以下问题:(1)你能说出垂足A1,A2,B1,B2,M1,M2的坐标吗?(2)点M是AB中点吗?M1是A1,B1的中点吗?它们的坐标有怎样的关系?(3)M2是A2,B2的中点吗?它们的坐标有怎样的关系?(4
14、)你能写出点M的坐标吗?教师投影结论,学生理解掌握师:例2中,点P与P的对称中心是P与P的中点吗?坐标怎么求?是多少?教师强调本例题的结论学生抢答,教师点评师:(1)如果点P与P关于x轴对称,PP与x轴垂直吗?P的横坐标是多少?(2)PP与x轴的交点M是线段PP的中点吗?M点的纵坐标是多少?(3)你能求出P的纵坐标吗?怎么求的?(4)由以上分析,点P的坐标是多少?(5)你能求出P的坐标吗?教师在学生探究的基础上进行总结学生抢答,教师点评教师引导学生解答,强调AC的中点与BD的中点相同教师规范解题步骤学生练习,教师巡视将探究问题细化为5个小问题,层层递进,降低了问题的难度,从而有利于学生解答为了
15、学生便于理解,课件中将过A,B两点向x轴和y轴做垂线的过程,分解为分别向x轴做垂线和向y轴做垂线两步在探究过程中,进一步深化对公式的理解与掌握通过例题的解答,使学生明确求两点间距离的步骤检验学生对公式掌握情况将问题细化为4问,降低难度,学生容易在解答过程中得到公式将问题化归为求点P与P的中点坐标检验对例2所得结论的掌握检验例3的掌握情况利用中点公式解决实际问题,进一步强化对公式的理解和掌握强化训练小结1直角坐标系中两点间的距离公式2直角坐标系中两点的中点公式3点的对称教师引导学生回顾总结本节所学内容简洁明了地概括本节课的重要知识,学生易于理解记忆 作业标记作业针对学生实际,对课后书面作业实施分
16、层设置8.2.1 直线与方程【教学目标】1. 理解直线的方程的概念,会判断一个点是否在一条直线上2. 培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质【教学重点】直线的特征性质,直线的方程的概念【教学难点】直线的方程的概念【教学方法】 这节课主要采用分组探究教学法本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念本节教学中,要突出用集合的观点完成由形到数、由数到形的转化【教学过程】环节教学内容师生互动设计意图引入1用性质描述法表示大于0的偶数构成的集合,并判断1和6在不在这个集合中2作
17、函数yx3的图象,并判断点(0,1)和(2,1)在不在函数的图象上教师提出问题,学生解答教师点评复习本节相关内容新课新课1. 函数与图象一次函数的图象是一条直线,如yx+3的图象是直线AB,如图所示xyBAO3312. 直线的特征性质问题:平面直角坐标系中的任意一条直线,都是由点组成的集合但是,已知任意一点的坐标,到底怎样才能判断它是不是在给定直线上呢?例如,通过点(2,0)且垂直于x轴的直线lxyBAO321123. 直线的方程一般地,在平面直角坐标系中,给定一条直线,如果直线上点的坐标都满足某个方程,而且满足这个方程的坐标所表示的点都在直线上,那么这个方程叫做直线的方程例分别给出下列直线的
展开阅读全文