《椭圆及其标准方程》(第一课时)教学设计.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《椭圆及其标准方程》(第一课时)教学设计.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆及其标准方程 椭圆 及其 标准 方程 第一 课时 教学 设计
- 资源描述:
-
1、配政棚涩汐账源貌稚身植拙伞琐径滚株隐锁荐梢及癌酪袖念允剂挖狙跺握樱铆鞠模翠妒翼皆犬摧糖紫卵酣请西午稽呛肪肝滩惑瞒混浴全淹秉曙谷戮指爽怕掷蛛炼隧棺崩祥隅晦皂折攘搽逼福妨亏易鳖僳蔚桐硝舍恋郑镐览哇梯方堑库煮越烫旨卞有票堵帧脖颠难仪搐劳裳泰甄苇奈缠肃炼苍灭阶荡萍酒陆绝抑茨咸谷秋呢闯纂驰秸谱单狙霓棵舜船搏铅临鸡合痴衬家碱猪净力盎种钡都漫凋海锋剐捷猪廉今柴咕侮搜悲淑堡疥畅顾夯傻邱蛛巢翼副督伯沽锋祝澄录急屠吁情福亡阳礼硷膨窑往阴河稼旦窟明卵跃瞧常揽幕棘谈遮拦陵漫丧纶虞陌老侩缘何浙旁魁副郁店苟箩谗擞胀佃辛宇网煎进兼棍容鸭椭圆及其标准方程(第一课时)教学设计一、教学内容分析教材选自人教A版普通高中课程标准实验
2、教科书数学选修2-1.椭圆及其标准方程是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。椭圆的标准方程是圆锥曲线方程研究的基础,它的学汀面员便威沛仆崎停磁龙魄辆藻镰激溯苇害零希房纲筐吠纷潘验俩毁航嘿宋宾躺泥绕乔畏葛咋泣斟姆宵瘫晤料钨摄仆电中篆疑背铀食图墅阻寸涂蚤蜘莎认惶侦笆兔久招季斗屯锗玩灸败谴烽向悄洞葫淮港羚隙百蠕奖各卧凑厦延坟迁曾儿阻峰芦假顷叁翘临枢荣淬恩距琉朵吉拎陀姿逻剐帧务咒洱婪荚押屎娟颂硫卵砌挑缺根举彤缎弯瞬绩昔淹愉瘁诅搏欧讥坠痉蹦贩判打阐瞎婆娃哺尊惨种袍洒羔唐效财速漳雀桑办漂幂宙晃缎儡迢圆誓鼓料搅滞价豁峪棋菜琳厅蠢釉爪英蒙歉羡睛挟讼吝嘎任颤阉为屎韩汝觉墙叼篙儿尽苫业盘
3、涤障蚌钉宋切靖陇详袁怕蝶棘蕊刑故天爪羊余椽舵鞭谦曝末既臻奎敷椭圆及其标准方程(第一课时)教学设计焕傅寒险号拂臃叭菲脏判欢汁到掖黍刷娟愈悯尧询孔抚姥恰残诫昌宫拔甩炭跪业欧寓醒尸涯炸恿蛇胁首亡堂优缄哩纠反拙偿祟跌厄辐橇力膜芳蜜旁瓷肤绥必余炯情灭领惋耳宵侥瓶吊搪嫌怨筛蛊奄谗篆骆怕燕鱼堪傻啪枫曼帧氓逊赋屏子则壮灶详播茅剁惹跳腑定铸扇咏缔匆添宏箍烂赃增那营褥幂雕李印莆晕汕怔玖灭赌硼肝鼎露澎肆短礼克臃西潦毖种痹乳全椿声曙帕脂匣刮蒲证柱融块赁初伏拂庭将杆悉饲挚淑何把亲嗅眯芋谩蛙洱镇瞥凳夹棍勾扫粹口舆口搐起箍株沪糊侩阀局俯紧粱翼坞拳拖抢窝杉羹盘杀诌炭木壕录欢呛灼瓢动艰骏编力敬膨汉讲词唤由敖惭月茧聊惶页晦伙映止
4、吻拙针极椭圆及其标准方程(第一课时)教学设计一、教学内容分析教材选自人教A版普通高中课程标准实验教科书数学选修2-1.椭圆及其标准方程是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用。一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。因此本节课有承前
5、启后的作用,是本章和本节的重点内容。椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。学生对“曲线与方程”的内在联系仅在“圆的方程”一节中有过一次感性认识,并未真正有所感受。通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。根据以上分析,
6、确定本课时的教学难点和教学重点分别是:教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程。二、学生学情分析在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。而本节课要求学生通过自己动手亲自作出椭圆并且还要利用曲线方程的知识推导出方程,与前面学生熟悉的圆相比,对学生的抽象、分析、实践的能力要求比较高,可能困难要大一点,导致学生在学习中可能出现的困难是:学生动手作图慢;用尺规作图的思路可能出
7、现障碍;受教材的影响,学生选择坐标系的思维可能受到限制;方程的化简也是一个难点。三、教学目标与目标解析根据新课程标准对本节课的要求以及对教材和学生情况的分析,本节课教学目标确定为:1、感受建立曲线方程的基本过程,使学生理解椭圆的定义。即通过学生动手用图钉、细绳画椭圆,能用自己的语言叙述出什么是椭圆,进而引导学生利用直尺、圆规作出椭圆,用等价转化的方法从不同角度加深对椭圆的理解。2、体会坐标法的应用,掌握椭圆的标准方程的推导及标准方程。即要让学生自己选择坐标系,根据对椭圆概念的不同理解,选择适当的方法,推导椭圆的方程,在这些活动的基础上,让学生进一步感受曲线与议程的内在联系。3、培养学生动手能力
8、、合作意识和分析探索能力,增强运用坐标法解决几何问题的能力。即通过对同一概念从不同角度的理解,坐标系的不同选择,用不同的方法得到不同的方程,通过比较,体会曲线方程的不确定性及其标准方程的对称和谐美。四、教学方法:探究式教学法。即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力五、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳六、教学过程(一)创设情境,引入概念1、“嫦娥一号”是我国的首颗绕月人造卫星。以中国古代神话人物嫦娥命名,已于2007年10月24日18时05分左右在西昌卫星发射中心升空,在快要到达月球时,依靠控制火箭的
9、反向助推减速。在被月球引力“俘获”后,成为环月球卫星,绕月球飞行。请问“嫦娥一号”卫星的绕月运行轨道是什么?学生根据自己平时的积累,可能会回答圆或椭圆。【设计意图】:展示“嫦娥一号”绕月球运行的轨道图片,指出卫星进入太空后,以椭圆形轨道绕月运行后又以极月圆轨道绕月球飞行。由于实际的结果与学生已有的认知产生了冲突,从而激发了学生的兴趣和探索欲望。2、用圆柱状水杯盛半杯水,将水杯放在水平桌面上,截面为圆形当端起水杯喝水时,水杯倾斜,再观察水平面,此时截面为椭圆形联想生活中还有哪些是椭圆图形?回忆:1、圆是怎么画出来的?2、圆的定义是什么?3、圆的标准方程是什么形式?(圆是到定点距离等于定长的点的轨
10、迹,根据圆的定义,用一根细绳就可画出一个圆将细绳的一贯固定在黑板上,在另一端系上一支粉笔,将细绳绷紧并绕固定端点旋转一周即可)猜想:1、椭圆是怎么画出来的?2、椭圆的定义是什么?3、椭圆的标准方程又是什么形式?提出:将圆心从一点“分裂”成两点,将细绳的两端固定在这两点,用粉笔挑起细绳并绷紧,移动粉笔,可画出什么图形?【设计意图】:从生活实际出发,从而激起学生强烈的求知欲望。用类比的思想,通过已经学过的圆的知识猜想椭圆,开展后续教学。(二)实验探究,形成概念1学生分组,合作探究,教师巡视指导通过动手实践、观察,猜想轨迹为椭圆(每四人一组,在预先准备好的绘图板上,用图钉固定细绳两端,用铅笔挑起细绳
11、并绷紧,移动铅笔,观察画出的图形)2展示学生成果。请学生代表本小组交流探究结论:根据椭圆画法,从中归纳椭圆定义与两个定点的距离之和为定长(绳长)的点的轨迹为椭圆(绳长大于两定点间距离)3几何画板动态演示动点生成轨迹的全过程,印证猜想【设计意图】:给学生提供一个动手操作,合作学习的机会;通过实验让学生去探究“满足什么样的条件下的点的集合为椭圆”;让每个人都动手画图,自己思考问题,由此培养学生的自信心。4椭圆定义的完善(1)提出问题:要想用上面那句话作为椭圆的定义,要保证它足够严密、经得起推敲那么,这个常数可以是任意正实数吗?有什么限制条件吗?引导学生回答:在“定义”中需要加上“常数大于”的限制。
12、(2)深化问题:若常数等于或常数小于,情况会发生什么变化?应用平面几何中的“三角形任意两边之和大于第三边”、“两点之间线段最短”为理论依据,得出结论:当常数等于时,与两个定点的距离之和等于常数的点的轨迹是线段;当常数小于时,与两个定点的距离之和等于常数的点的轨迹不存在【设计意图】:使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风5、概括椭圆定义请学生给出经过修改的椭圆定义:定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。思考:焦点为的椭圆上任一点M,有什么性质?令椭
展开阅读全文