(完整版)平均数教学设计.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)平均数教学设计.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 平均数 教学 设计
- 资源描述:
-
1、一、张齐华平均数教学实录 (请注意他的语言表述)【教学内容】 苏教版义务教育课程标准实验教科书 数学三年级(下册)第9294页。【教学目标】1在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。2能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。3进一步发展学生的思维能力,增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。一、初步建立平均数的意义 师:你们喜欢体育运动吗? 生:(齐)喜欢! 师:如果张老师告诉大家,我最喜欢并且最
2、拿手的体育运动是篮球,你们相信吗? 生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。 师:真是哪壶不开提哪壶啊。不过还别说,和你们一样,我们班上的小力、小林、小刚对我的投篮技术也深表怀疑。就在上星期,他们三人还约我进行了一场“1分钟投篮挑战赛”。怎么样,想不想了解现场的比赛情况? 生:(齐)想! 师:首先出场的是小力,他1分钟投中了5个球。可是,小力对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,你会同意他的要求吗? 生:我不同意。万一他后面两次投中的多了,那我不就危险啦! 生:我会同意的。做老师的应该大度一点。 师:呵呵,还
3、真和我想到一块儿去了。不过,小力后两次的投篮成绩很有趣。 (师出示小力的后两次投篮成绩:5个,5个。生会心地笑了)师:还真巧,小力三次都投中了5个。现在看来,要表示小力1分钟投中的个数,用哪个数比较合适?生:5。 师:为什么? 生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。 师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢?我们也一起来看看吧。(师出示小林第一次投中的个数:3个) 师:如果你是小林,会就这样结束吗? 生:不会!我也会要求再投两次的。师:为什么?生:这也太少了,肯定是发挥失常。 师:正如你们所说的,小林果然也要求再投两次。不过,麻烦来了。(出示小林的后两次成
4、绩:5个,4个)三次投篮,结果怎么样?生:(齐)不同。 师:是呀,三次成绩各不相同。这一回,又该用哪个数来表示小林1分钟投篮的一般水平呢? 生:我觉得可以用5来表示,因为他最多,二次投中了5个。 生:我不同意川、强每次都投中5个,所以用5来表示他的成绩。但小林另外两次分别投中4个和3个,怎么能用5来表示呢?师:也就是说,如果也用5来表示,对小力来说生:(齐)不公平! 师:该用哪个数来表示呢? 生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。 师:不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。生:(齐)那他还有一次投中3个,比4个少1呀。师:哦,一次比4多1
5、,一次比4少1 生:那么,把5里面多的1个送给3,这样不就都是4个了吗? 师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。移完后,小林每分钟看起来都投中了几个? 生:(齐)4个。 师:能代表小林1分钟投篮的一般水平吗? 生:(齐)能! 师:轮到小刚出场了。(出示图)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,然后在小组里交流自己的想法。生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。师:还
6、有别的方法吗? 生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。 师板书:3+7+2=12(个),123=4(个) 师:像这样先把每次投中的个数合起来,然后再平均分给这三次(板书:合并、平分),能使每一次看起来一样多吗? 生:能!都是4个。 师:能不能代表小刚1分钟投篮的一般水平?生:能!师:其实,无论是刚才的移多补少,还是这回的先合并再平均分,目的只有一个,那就是生:使原来几个不相同的数变得同样多。 师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里
7、(出示图),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图),哪个数是哪几个数的平均数呢?在小组里说说你的想法。 生:在这里,4是3、7、2这三个数的平均数。 师:不过,这里的平均数4能代表小刚第一次投中的个数吗? 生:不能! 师:能代表小刚第二次、第三次投中的个数吗? 生:也不能! 师:奇怪,这里的平均数4既不能代表小刚第一次投中的个数,也不能代表他第二次、第三次投中的个数,那它究竟代表的是哪一次的个数呢? 生:这里的4代表的是小刚三次投篮的平均水平。 生:是小刚1分钟投篮的一般水平。 (师板书:一般水平) 师:最后,该我出场了。知道自己投篮水平不怎么样,所以正式比赛前,我主动
8、提出投四次的想法。没想到,他们竟一口答应了。前三次投篮已经结束,怎么样,想不想看看我每一次的投篮情况?(师呈现前三次投篮成绩:4个、6个、5个)师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想? 生:他们可能会想:完了完了,肯定输了。 师:从哪儿看出来的? 生:你们看,光前三次,张老师平均1分钟就投中了5个,和*并列第一。更何况,张老师还有一次没投呢。生:我觉得不一定。万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。生:万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了? 师:情况究竟会怎么样呢?还是让我们赶紧看看第四次投篮的成绩吧。(师出示图)师:
9、凭直觉,张老师最终是赢了还是输了?生:输了。因为你最后一次只投中1个,也太少了。师:不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗? 生:大约是4个。 生:我也觉得是4个。 师:英雄所见略同呀。不过,第二次我明明投中了6个,为什么你们不估计我最后的平均成绩是6个? 生:不可能,因为只有一次投中6个,又不是次次都投中6个。 生:前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。 生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。 师:那你们为什么不估计平均成绩是1个呢?最后一次只投中1个呀!生:也不可能。这次尽管只投中1个,但其他几
10、次都比1个多,移一些补给它后,就不止1个了。师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均成绩应该比这里最大的数生:小一些。生:还要比最小的数大一些。生:应该在最大数和最小数之间。 师:是不是这样呢?赶紧想办法算算看吧。 生列式计算,并交流计算过程:4+6+5+1=16(个),164=4(个) 师:和刚才估计的结果比较一下,怎么样? 生:的确在最大数和最小数之间。 师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿?生:最后一次投得太少了。生:如果最后一次多投几个,或许你就会赢了。 师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?
展开阅读全文