书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型中考数学提高题专题复习二次函数练习题.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5545641
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:18
  • 大小:1.27MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学提高题专题复习二次函数练习题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 提高 专题 复习 二次 函数 练习题 下载 _二轮专题_中考复习_数学_初中
    资源描述:

    1、一、二次函数 真题与模拟题分类汇编(难题易错题)1新春佳节,电子鞭炮因其安全、无污染开始走俏某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=2x+320(80x160)设这种电子鞭炮每天的销售利润为w元(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快那么销售单价应定为多少元?【答案】(1)w=2x2+480x25600;(2)销售单价定为120元时,每天销售利润最大,最

    2、大销售利润3200元(3)销售单价应定为100元【解析】【分析】(1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;(3)求所对应的自变量的值,即解方程然后检验即可.【详解】(1) w与x的函数关系式为: (2) 当时,w有最大值w最大值为3200答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)当时, 解得: 想卖得快,不符合题意,应舍去答:销售单价应定为100元2如图,已知抛物线yx2+bx+c与一直线相交于A(1,0)、C(2,3)两点,与y轴交于点N,其顶点为D(1

    3、)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使ANM的周长最小若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由【答案】(1)yx22x+3;yx+1;(2)当x时,APC的面积取最大值,最大值为,此时点P的坐标为(,);(3)在对称轴上存在一点M(1,2),使ANM的周长最小,ANM周长的最小值为3【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PEy轴交x轴于点E,交直线AC于点F,过点C作CQy轴交x轴于

    4、点Q,设点P的坐标为(x,x22x+3)(2x1),则点E的坐标为(x,0),点F的坐标为(x,x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出SAPCx2x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出ANM周长的最小值即可得出结论【详解

    5、】(1)将A(1,0),C(2,3)代入yx2+bx+c,得:,解得:,抛物线的函数关系式为yx22x+3;设直线AC的函数关系式为ymx+n(m0),将A(1,0),C(2,3)代入ymx+n,得:,解得:,直线AC的函数关系式为yx+1(2)过点P作PEy轴交x轴于点E,交直线AC于点F,过点C作CQy轴交x轴于点Q,如图1所示设点P的坐标为(x,x22x+3)(2x1),则点E的坐标为(x,0),点F的坐标为(x,x+1),PEx22x+3,EFx+1,EFPEEFx22x+3(x+1)x2x+2点C的坐标为(2,3),点Q的坐标为(2,0),AQ1(2)3,SAPCAQPFx2x+3(

    6、x+)2+ 0,当x时,APC的面积取最大值,最大值为,此时点P的坐标为(, )(3)当x0时,yx22x+33,点N的坐标为(0,3)yx22x+3(x+1)2+4,抛物线的对称轴为直线x1点C的坐标为(2,3),点C,N关于抛物线的对称轴对称令直线AC与抛物线的对称轴的交点为点M,如图2所示点C,N关于抛物线的对称轴对称,MNCM,AM+MNAM+MCAC,此时ANM周长取最小值当x1时,yx+12,此时点M的坐标为(1,2)点A的坐标为(1,0),点C的坐标为(2,3),点N的坐标为(0,3),AC 3,AN ,CANMAM+MN+ANAC+AN3+在对称轴上存在一点M(1,2),使AN

    7、M的周长最小,ANM周长的最小值为3+【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出SAPCx2x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置3某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)

    8、之间的函数关系如图所示(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y20x+500,(x6);(2)当x15.5时,w的最大值为1805元;(3)当x13时,w1680,此时,既能销售完又能获得最大利润【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:ykx+b即可求解;(

    9、2)由题意得:wy(x6)20(x25)(x6),200,故w有最大值,即可求解;(3)当x15.5时,y190,5019012000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(50020x)12000,解得:x13,当x13时,既能销售完又能获得最大利润【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:ykx+b得:,解得:,即:函数的表达式为:y20x+500,(x6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:wy(x6)20(x25)(x6),200,故w有最大值,当x15.5时,w的最大值为1805元;(3)当x15.

    10、5时,y190,5019012000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(50020x)12000,解得:x13,w20(x25)(x6),当x13时,w1680,此时,既能销售完又能获得最大利润【点睛】本题考查了二次函数的性质在实际生活中的应用最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案其中要注意应该在自变量的取值范围内求最大值(或最小值).4在平面直角坐标系中,有两点、,若满足:当时,;当时,则称点为点的“友好点”.(1)点的“友好点”的坐

    11、标是_.(2)点是直线上的一点,点是点的“友好点”.当点与点重合时,求点的坐标.当点与点不重合时,求线段的长度随着的增大而减小时,的取值范围.【答案】(1);(2)点的坐标是或;当或时,的长度随着的增大而减小;【解析】【分析】(1)直接利用“友好点”定义进行解题即可;(2)先利用 “友好点”定义求出B点坐标,A点又在直线上,得到;当点和点重合,得解出即可,当点A和点B不重合, 且所以对a分情况讨论,1、当或时,所以当a时,的长度随着的增大而减小,即取2当时,当时,的长度随着的增大而减小,即取 综上,当或时,的长度随着的增大而减小【详解】(1)点,41,根据“友好点”定义,得到点的“友好点”的坐

    12、标是(2)点是直线上的一点,根据友好点的定义,点的坐标为, 当点和点重合,解得或 当时,;当时,点的坐标是或 当点A和点B不重合,且当或时, 当a时,的长度随着的增大而减小,取当时, 当时,的长度随着的增大而减小,取 综上,当或时,的长度随着的增大而减小【点睛】本题属于阅读理解题型,结合二次函数的基本性质进行解题,第二问的第二小问的关键是求出AB的长用a进行表示,然后利用二次函数基本性质进行分类讨论5如图,直线y-x-3与x轴,y轴分别交于点A,C,经过点A,C的抛物线yax2+bx3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DEx轴于点E,连接AD,DC设点D的横坐标为

    13、m(1)求抛物线的解析式;(2)当点D在第三象限,设DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若EADOBC,请直接写出此时点D的坐标【答案】(1)yx2+x3;(2)SADC=(m+3)2+;ADC的面积最大值为;此时D(3,);(3)满足条件的点D坐标为(4,3)或(8,21).【解析】【分析】(1)求出A坐标,再用待定系数法求解析式;(2)设DE与AC的交点为点F.设点D的坐标为:(m,m2+m3),则点F的坐标为:(m,m3),根据SADCSADF+SDFC求出解析式,再求最值;(3)当点D与点C关于对称轴对称时,D(4,3),根据对称性

    14、此时EADABC作点D(4,3)关于x轴的对称点D(4,3),直线AD的解析式为yx+9,解方程组求出函数图像交点坐标.【详解】解:(1)在yx3中,当y0时,x6,即点A的坐标为:(6,0),将A(6,0),B(2,0)代入yax2+bx3得:,解得:,抛物线的解析式为:yx2+x3;(2)设点D的坐标为:(m,m2+m3),则点F的坐标为:(m,m3),设DE与AC的交点为点F.DFm3(m2+m3)m2m,SADCSADF+SDFCDFAE+DFOEDFOA(m2m)6m2m(m+3)2+,a0,抛物线开口向下,当m3时,SADC存在最大值,又当m3时,m2+m3,存在点D(3,),使得

    15、ADC的面积最大,最大值为;(3)当点D与点C关于对称轴对称时,D(4,3),根据对称性此时EADABC作点D(4,3)关于x轴的对称点D(4,3),直线AD的解析式为yx+9,由,解得或,此时直线AD与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(4,3)或(8,21) 【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题.6已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(2,0),点P是线段AB上方抛物线上的

    16、一个动点(1)求抛物线的解析式;(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PEx轴交抛物线于点E,连结DE,请问是否存在点P使PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由【答案】(1)抛物线解析式为y=x2+2x+6;(2)当t=3时,PAB的面积有最大值;(3)点P(4,6)【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PMOB与点M,交AB于点N,作AGPM,先求出直线AB解析式为y=x+6,设P(t,t2+2t+6),则N(t,t+6),由SPAB=SPAN+SPBN=PNAG+PNBM=

    17、PNOB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PHOB知DHAO,据此由OA=OB=6得BDH=BAO=45,结合DPE=90知若PDE为等腰直角三角形,则EDP=45,从而得出点E与点A重合,求出y=6时x的值即可得出答案【详解】(1)抛物线过点B(6,0)、C(2,0),设抛物线解析式为y=a(x6)(x+2),将点A(0,6)代入,得:12a=6,解得:a=,所以抛物线解析式为y=(x6)(x+2)=x2+2x+6;(2)如图1,过点P作PMOB与点M,交AB于点N,作AGPM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:,解得:,

    18、则直线AB解析式为y=x+6,设P(t,t2+2t+6)其中0t6,则N(t,t+6),PN=PMMN=t2+2t+6(t+6)=t2+2t+6+t6=t2+3t,SPAB=SPAN+SPBN=PNAG+PNBM=PN(AG+BM)=PNOB=(t2+3t)6=t2+9t=(t3)2+,当t=3时,PAB的面积有最大值;(3)如图2,PHOB于H,DHB=AOB=90,DHAO,OA=OB=6,BDH=BAO=45,PEx轴、PDx轴,DPE=90,若PDE为等腰直角三角形,则EDP=45,EDP与BDH互为对顶角,即点E与点A重合,则当y=6时,x2+2x+6=6,解得:x=0(舍)或x=4

    19、,即点P(4,6)【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.7如图,已知抛物线y=ax2+bx2(a0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tanDBA=(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为

    20、半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由【答案】(1)y=x2+x2;(2)9;(3)点Q的坐标为(2,4)或(2,1)【解析】(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了RtAGF的各个边长;然后证明RtAGFRtQEF,利用相似线段比例关系列出方程,求出点Q的坐标考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函

    21、数最值,勾股定理,相似三角形的判定和性质,圆的切线性质8如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断BCD的形状,并说明理由;(3)将直线BC向上平移t(t0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当AMN为直角三角形时,求t的值【答案】(1);(2)BCD为直角三角形,理由见解析;(3)当AMN为直角三角形时,t的值为1或4【解析】【分析】(1)根据点A、B的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,

    22、可求出点C、D的坐标,利用两点间的距离公式可求出CD、BD、BC的长,由勾股定理的逆定理可证出BCD为直角三角形;(3)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M、N的坐标,利用两点间的距离公式可求出AM2、AN2、MN2的值,分别令三个角为直角,利用勾股定理可得出关于t的无理方程,解之即可得出结论【详解】(1)将、代入,得:,解得:,此二次函数解析式为(2)为直角三角形,理由如下:,顶点的坐标为当时,点的坐标为点的坐标为,为直角三角形(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将

    23、直线向上平移个单位得到的直线的解析式为联立新直线与抛物线的解析式成方程组,得:,解得:,点的坐标为,点的坐标为,点的坐标为,为直角三角形,分三种情况考虑:当时,有,即,整理,得:,解得:,(不合题意,舍去);当时,有,即,整理,得:,解得:,(不合题意,舍去);当时,有,即,整理,得:,该方程无解(或解均为增解)综上所述:当为直角三角形时,的值为1或4【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理

    24、找出BC2+BD2=CD2;(3)分MAN=90、AMN=90及ANM=90三种情况考虑9抛物线,若a,b,c满足b=a+c,则称抛物线为“恒定”抛物线(1)求证:“恒定”抛物线必过x轴上的一个定点A;(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由【答案】(1)证明见试题解析;(2),或【解析】试题分析:(1)由“恒定”抛物线的定义,即可得出抛物线恒过定点(1,0);(2)求出抛物线的顶点坐标和B的坐标,由题意得出PACQ,PA=CQ;存

    25、在两种情况:作QMAC于M,则QM=OP=,证明RtQMCRtPOA,MC=OA=1,得出点Q的坐标,设抛物线的解析式为,把点A坐标代入求出a的值即可;顶点Q在y轴上,此时点C与点B重合;证明OQCOPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为,把点C坐标代入求出a的值即可试题解析:(1)由“恒定”抛物线,得:b=a+c,即ab+c=0,抛物线,当x=1时,y=0,“恒定”抛物线必过x轴上的一个定点A(1,0);(2)存在;理由如下:“恒定”抛物线,当y=0时,解得:x=1,A(1,0),B(1,0);x=0时,y=,顶点P的坐标为(0,),以PA,CQ为边的平行四边形,PA、CQ

    26、是对边,PACQ,PA=CQ,存在两种情况:如图1所示:作QMAC于M,则QM=OP=,QMC=90=POA,在RtQMC和RtPOA中,CQ=PA,QM=OP,RtQMCRtPOA(HL),MC=OA=1,OM=2,点A和点C是抛物线上的对称点,AM=MC=1,点Q的坐标为(2,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点A(1,0)代入得:a=,抛物线的解析式为:,即;如图2所示:顶点Q在y轴上,此时点C与点B重合,点C坐标为(1,0),CQPA,OQC=OPA,在OQC和OPA中,OQC=OPA,COQ=AOP,CQ=PA,OQCOPA(AAS),OQ=OP=,

    27、点Q坐标为(0,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点C(1,0)代入得:a=,抛物线的解析式为:;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:,或考点:1二次函数综合题;2压轴题;3新定义;4存在型;5分类讨论10空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米如图1,求所利用旧墙AD的长;(2)已知050,且空地足够大,如图2请你

    28、合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值【答案】(1)利用旧墙AD的长为10米(2)见解析.【解析】【分析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系【详解】(1)设AD=x米,则AB=米依题意得,450解得x1=10,x2=90a=20,且xax=90舍去利用旧墙AD的长为10米(2)设AD=x米,矩形ABCD的面积为S平方米如果按图一方案围成矩形菜园,依题意得:S=,0xa0a50xa50时,S随x的增大而增大当x=a时,S最大=50a-a2如按图2方案围成矩形菜园,依题意得S=,ax50+当a25+50时,即0a时,则x=25+时,S最大=(25+)2=,当25+a,即a50时,S随x的增大而减小x=a时,S最大=,综合,当0a时,-()=0,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当a50时,两种方案围成的矩形菜园面积最大值相等当0a时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当a50时,围成长为a米,宽为(50-)米的矩形菜园面积最大,最大面积为()平方米【点睛】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学提高题专题复习二次函数练习题.doc
    链接地址:https://www.163wenku.com/p-5545641.html
    2023DOC
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025年中考数学二轮复习:圆的切线证明 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:圆的切线证明 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:三角形的证明 专题练习题汇编(含答案).docx2025年中考数学二轮复习:三角形的证明 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:二次函数新定义问题 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:二次函数新定义问题 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:二元一次方程组 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:二元一次方程组 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:矩形 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:矩形 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:全等三角形 专题练习题汇编(含答案).docx2025年中考数学二轮复习:全等三角形 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:新定义试题 专题练习题汇编(含答案).docx2025年中考数学二轮复习:新定义试题 专题练习题汇编(含答案).docx
  • 2025年中考数学二轮复习:平行四边形 专题练习题汇编(含答案解析).docx2025年中考数学二轮复习:平行四边形 专题练习题汇编(含答案解析).docx
  • 2025年中考数学二轮复习:几何压轴冲刺 专题练习题汇编(含答案).docx2025年中考数学二轮复习:几何压轴冲刺 专题练习题汇编(含答案).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型3 与折叠有关的探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型3 与折叠有关的探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx2024年中考数学二轮题型突破题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型11 综合探究题 类型1 非动态探究题(专题训练)(学生版).docx2024年中考数学二轮题型突破题型11 综合探究题 类型1 非动态探究题(专题训练)(学生版).docx
  • 2024年中考数学二轮题型突破题型9 二次函数综合题 类型7 二次函数与直角三角形有关的问题(专题训练)(教师版).docx2024年中考数学二轮题型突破题型9 二次函数综合题 类型7 二次函数与直角三角形有关的问题(专题训练)(教师版).docx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库