一元一次方程整章复习经典版.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一元一次方程整章复习经典版.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次方程 整章 复习 经典
- 资源描述:
-
1、一元一次方程知识点一:一元一次方程的概念例1、 已知下列各式:2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的个数是()A、5B、6C、7D、8举一反三:【变式1】判断下列方程是否是一元一次方程:(1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)【变式2】已知:(a3)(2a5)x(a3)y60是一元一次方程,求a的值。【变式3】若关于x的方程是一元一次方程,则m的值为( )知识点二:方程的解 题型一:已知方程的解,求未知常数例2、当取何值时,关于的方程的解为?举一反三:y=1是方程的解,求关于x的方程的解题型二
2、:已知一方程的解,求另一方程的解例3、已知是关于的方程的解,解关于的方程:题型三:同解问题例4、方程与的解相同,则的值等于( )举一反三:【变式1】已知方程与方程的解相同(1)求的值;(2)求代数式的值【变式2】方程的解与关于x的方程的解互为倒数,求k的值。题型四:已知方程解的情况,求未知常数的取值范围例5、要使方程ax=a的解为1,则( )A.a可取任何有理数 B.a0 C. a0 D.a0例6、关于x的方程ax+3=4x+1的解为正整数,则a的值为( )A. 2 B. 3 C.1或2 D.2或3举一反三:已知方程2ax=(a1)x+6,求a为何整数时,方程的解是正整数.知识点三:等式的性质
3、(方程变形解方程的重要依据)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为 ,如方程:=1.6,将其化为: =1.6。方程的右边没有变化,这要与“去分母”区别开。例7、下列等式变形正确的是( )A.若,则 B. 若,则C.若,则 D. 若,则举一反三:1、若,下列变形不一定正确的是( )A. B. C. D. 2、下列等式变形错误的是( ) A.由a=b得a+5=b+5; B.由a=b得6a=6b ; C.由x+2=y+2得x=y; D.由x3=3y得x=y3、运用等式性质进行的变形,正确的是( ) A.如果a=b 那么a+c=b-c; B.如果6a=b-6 那么a
4、=b; C.如果a=b 那么a3=b3 ; D.如果a2=3a 那么a=3 4、下列等式变形错误的是( ) A.由a=b得a+5=b+5; B.由a=b得; C.由x+2=y+2得x=y; D.由-3x=-3y得x=-y5、运用等式性质进行的变形,正确的是( ) A.如果a=b,那么a+c=b-c; B.如果,那么a=b; C.如果a=b,那么; D.如果a2=3a,那么a=36、如果ma=mb,那么下列等式中不一定成立的是()A. ma+1=mb+1 B.ma3=mb3 C. a=b D. 7、运用等式性质进行的变形,正确的是( )。 A.如果a=b,那么a+c=b-c; B.如果,那么a=
5、b; C.如果a=b,那么 D.如果,那么a=3知识点四:解一元一次方程的一般步骤(二)解一元一次方程的一般步骤是:变形名称具体做法变形依据去分母在方程两边都乘以各分母的最小公倍数 去括号先去小括号,再去中括号,最后去大括号 移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号) 合并同类项把方程化成axb(a0)的形式 系数化成1在方程两边都除以未知数的系数a,得到方程的解x 知识点五:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用(1)a0时,方程有唯一解 ;(2)a=0,b=0时,方程有 ;(3)a=0,b0时,方程 。题型一:方程有唯一解例8、若
6、(3a+2b)x2+ax+b=0是关于x的一元一次方程,且x有唯一解,求这个解.题型二:方程有无数解例9、关于x的方程3x4=abx有无穷多个解,则a. b的值应是( )A. a=4, b=3 B.a=4, b=3 C. a=4 , b=3 D.a .b可取任意数题型三:方程有无解例10、已知关于x的方程无解,则a的值是( ) A.1 B.-1 C.1 D.不等于1的数举一反三:1、已知关于x的方程a(2x-1)=3x-2无解,试求a的值2、若关于x的方程 2x1 +m=0无解,则m=_.3.(1)关于x的方程4k(x+2)1=2x无解,求k的值; (2)关于x的方程kxk=2x5的解为正数,
7、求k的取值范围.4、已知关于x的方程a(2x1)=4x+3b,当a、b为何值时: (1)方程有唯一解? (2)方程有无数解? (3)方程没有解?总结升华: 理解方程ax=b在不同条件下解的各种情况(1)a0时,方程有唯一解x=; (2)a=0,b=0时,方程有无数个解; (3)a=0,b0时,方程无解。知识点六:列一元一次方程解应用题的一般步骤:(一) 巧凑整数解方程例11、解方程:思路点拨:仔细观察发现,含未知数的项的系数和为 ,常数项和为 ,故直接移项凑成 比先去分母简单。解:举一反三:【变式】解方程:2x5解:(二)巧用观察法解方程例12、解方程:(三)巧去括号法解方程含多层括号的一元一
8、次方程,要根据方程中各系数的特点,选择适当的去括号的方法,以避免繁杂的计算过程。例12、解方程:思路点拨:因为题目中分数的分子和分母具有倍数关系,所以从 向 去括号可以使计算简单。解:举一反三:【变式】解方程:解:(四)运用拆项法解方程在解有分母的一元一次方程时,可以不直接去分母,而是逆用分数加减法法则,拆项后再合并,有时可以使运算简便。例14、解方程:思路点拨:注意到_,这样逆用分数加减法法则,可使计算简便。解:(五)巧去分母解方程当方程的分母含有小数,而小数之间又没有特殊的倍数关系时,若直接去分母则会出现比较繁琐的运算。为了避免这样的运算。应把分母化成整数。化整数时,利用分数的基本性质将各
9、个分子、分母同时扩大相同的倍数即可。例15、解方程:1解:(六)巧组合解方程例16、解方程:思路点拨:按常规解法将方程两边同乘 化去分母,但运算较复杂,注意到左边的第一项和右边的第 项中的分母有公约数 ,左边的第 项和右边的第一项的分母有公约数 ,移项局部通分化简,可简化解题过程。解:(七)巧解含有绝对值的方程解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|m,则_。例17、解方程:|x2|30解法一:解法二:举一反三:【变式1】5|x|163|x|4解析:【变式
10、2】 解析:解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。(2)当括号内含有分数时,常由外向内先去括号,再去分母。(3)当分母中含有小数时,可用分数的基本性质化成整数。(4)运用整体思想,即把含有未知数的代数式看作整体进行变形。知识点七:一元一次方程的应用常见的一些等量关系类型基本数量关系等量关系(1)和、差、倍、分问题较大量较小量多余量总量倍数倍量抓住关键性词语(2)等积变形问题变形前后体积相等(3)行程问题相遇问题路程速度时间甲走的路程乙走的路程两地距离追及问题同地不同时出发:前者走的路程追者走的路程同时不同地出发:前者走的路程两地距离追者所走的路程顺逆流问题
11、顺流速度静水速度水流速度逆流速度静水速度水流速度顺流的距离逆流的距离(4)劳力调配问题从调配后的数量关系中找相等关系,要抓住“相等”“几倍”“几分之几”“多”“少”等关键词语(5)工程问题工作总量工作效率工作时间各部分工作量之和1(6)利润率问题商品利润 商品利润率 100售价进价(1利润率)抓住价格升降对利润率的影响来考虑(7)数字问题设一个两位数的十位上的数字、个位上的数字分别为a,b,则这个两位数可表示为 抓住数字所在的位置,新数与原数之间的关系(8)储蓄问题利息本金利率期数本息和本金利息本金本金利率期数(1利息税率)(9)按比例分配问题甲乙丙abc全部数量各种成分的数量之和(设一份为x
12、)(10)日历中的问题日历中每一行上相邻两数,右边的数比左边的数大 ;日历中每一列上相邻的两数,下边的数比上边的数大 。日历中的数a的取值范围是_,且都是正整数题型一:和、差、倍、分问题例18、牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只羊从了、后面跟上来,他对牧羊人说;“你赶的这群羊大概有100只吧。”牧羊人说:“如果给这群羊加上一倍,再加上原来的这群羊的一半,又加上原来这群羊的一半的一半,连你的这只也加上才刚好凑满100只”,牧羊人的这群羊一个有多少只?举一反三:1、某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工
13、人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?2、已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?3、两个班组工人,按计划本月应共生产680个零件,实际第一组超额20、第二组超额15完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?4、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?题型二:等积变形问题例19、
14、 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252mm内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数p314.)题型三:行程问题(1)行程问题中的三个基本量及其关系: 路程=速度时间。 (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。 例20. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开
15、出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 例21.甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1
16、小时乙到达A地.问甲、乙行驶的速度分别是多少?思路点拨:设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲3+90乙3相遇前甲行驶的路程+_=相遇前乙行驶的路程;相遇后乙行驶的路程=相遇前甲行驶的路程.解:举一反三:【变式】甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的。摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?解:总结升华:三个基本量关系是: 速度时间=路程分析方法辅助手段: 线段图分析法、列表分析法 顺水(风)速度静水(风)速度水流(
17、风)速度 逆水(风)速度静水(风)速度水流(风)速度相遇问题: 甲的路程+乙的路程全程追及问题: (1)同地不同时:慢者行程先行路程快者路程(2)同时不同地:快者路程 慢者行程间隔距离环形跑道问题:(1)同时同向出发:快车走的路程慢车走的路程=环行跑道周长 (第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)过桥(洞):车进洞(上桥)到出洞(下桥)的总路程=车长+洞(桥)长题型四:劳力调配问题这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。例22. 机械
18、厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:列表法。每人每天人数数量大齿轮16个x人16x小齿轮10个人 等量关系:小齿轮数量的2倍大齿轮数量的3倍题型五:工程问题工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。例23. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 举一反三:(1)甲每天生产某种零件8
19、0个,3天能生产 个零件。(2)甲每天生产某种零件80个,乙每天生产某种零件x个。他们5天一共生产 个零件。(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天, 两人共生产 个零件。(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程 ;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的 。变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲乙合做,需几小时完成这件工作? 变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成? 变式3:一件工作,甲单独做2
20、0小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成? 变式4:整理一批数据,有一人做需要80小时完成。现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?题型六:利润率问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率例24. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究题目中隐
展开阅读全文