书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型一元一次方程整章复习经典版.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5545265
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:22
  • 大小:318.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《一元一次方程整章复习经典版.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    一元一次方程 整章 复习 经典
    资源描述:

    1、一元一次方程知识点一:一元一次方程的概念例1、 已知下列各式:2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的个数是()A、5B、6C、7D、8举一反三:【变式1】判断下列方程是否是一元一次方程:(1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)【变式2】已知:(a3)(2a5)x(a3)y60是一元一次方程,求a的值。【变式3】若关于x的方程是一元一次方程,则m的值为( )知识点二:方程的解 题型一:已知方程的解,求未知常数例2、当取何值时,关于的方程的解为?举一反三:y=1是方程的解,求关于x的方程的解题型二

    2、:已知一方程的解,求另一方程的解例3、已知是关于的方程的解,解关于的方程:题型三:同解问题例4、方程与的解相同,则的值等于( )举一反三:【变式1】已知方程与方程的解相同(1)求的值;(2)求代数式的值【变式2】方程的解与关于x的方程的解互为倒数,求k的值。题型四:已知方程解的情况,求未知常数的取值范围例5、要使方程ax=a的解为1,则( )A.a可取任何有理数 B.a0 C. a0 D.a0例6、关于x的方程ax+3=4x+1的解为正整数,则a的值为( )A. 2 B. 3 C.1或2 D.2或3举一反三:已知方程2ax=(a1)x+6,求a为何整数时,方程的解是正整数.知识点三:等式的性质

    3、(方程变形解方程的重要依据)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为 ,如方程:=1.6,将其化为: =1.6。方程的右边没有变化,这要与“去分母”区别开。例7、下列等式变形正确的是( )A.若,则 B. 若,则C.若,则 D. 若,则举一反三:1、若,下列变形不一定正确的是( )A. B. C. D. 2、下列等式变形错误的是( ) A.由a=b得a+5=b+5; B.由a=b得6a=6b ; C.由x+2=y+2得x=y; D.由x3=3y得x=y3、运用等式性质进行的变形,正确的是( ) A.如果a=b 那么a+c=b-c; B.如果6a=b-6 那么a

    4、=b; C.如果a=b 那么a3=b3 ; D.如果a2=3a 那么a=3 4、下列等式变形错误的是( ) A.由a=b得a+5=b+5; B.由a=b得; C.由x+2=y+2得x=y; D.由-3x=-3y得x=-y5、运用等式性质进行的变形,正确的是( ) A.如果a=b,那么a+c=b-c; B.如果,那么a=b; C.如果a=b,那么; D.如果a2=3a,那么a=36、如果ma=mb,那么下列等式中不一定成立的是()A. ma+1=mb+1 B.ma3=mb3 C. a=b D. 7、运用等式性质进行的变形,正确的是( )。 A.如果a=b,那么a+c=b-c; B.如果,那么a=

    5、b; C.如果a=b,那么 D.如果,那么a=3知识点四:解一元一次方程的一般步骤(二)解一元一次方程的一般步骤是:变形名称具体做法变形依据去分母在方程两边都乘以各分母的最小公倍数 去括号先去小括号,再去中括号,最后去大括号 移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号) 合并同类项把方程化成axb(a0)的形式 系数化成1在方程两边都除以未知数的系数a,得到方程的解x 知识点五:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用(1)a0时,方程有唯一解 ;(2)a=0,b=0时,方程有 ;(3)a=0,b0时,方程 。题型一:方程有唯一解例8、若

    6、(3a+2b)x2+ax+b=0是关于x的一元一次方程,且x有唯一解,求这个解.题型二:方程有无数解例9、关于x的方程3x4=abx有无穷多个解,则a. b的值应是( )A. a=4, b=3 B.a=4, b=3 C. a=4 , b=3 D.a .b可取任意数题型三:方程有无解例10、已知关于x的方程无解,则a的值是( ) A.1 B.-1 C.1 D.不等于1的数举一反三:1、已知关于x的方程a(2x-1)=3x-2无解,试求a的值2、若关于x的方程 2x1 +m=0无解,则m=_.3.(1)关于x的方程4k(x+2)1=2x无解,求k的值; (2)关于x的方程kxk=2x5的解为正数,

    7、求k的取值范围.4、已知关于x的方程a(2x1)=4x+3b,当a、b为何值时: (1)方程有唯一解? (2)方程有无数解? (3)方程没有解?总结升华: 理解方程ax=b在不同条件下解的各种情况(1)a0时,方程有唯一解x=; (2)a=0,b=0时,方程有无数个解; (3)a=0,b0时,方程无解。知识点六:列一元一次方程解应用题的一般步骤:(一) 巧凑整数解方程例11、解方程:思路点拨:仔细观察发现,含未知数的项的系数和为 ,常数项和为 ,故直接移项凑成 比先去分母简单。解:举一反三:【变式】解方程:2x5解:(二)巧用观察法解方程例12、解方程:(三)巧去括号法解方程含多层括号的一元一

    8、次方程,要根据方程中各系数的特点,选择适当的去括号的方法,以避免繁杂的计算过程。例12、解方程:思路点拨:因为题目中分数的分子和分母具有倍数关系,所以从 向 去括号可以使计算简单。解:举一反三:【变式】解方程:解:(四)运用拆项法解方程在解有分母的一元一次方程时,可以不直接去分母,而是逆用分数加减法法则,拆项后再合并,有时可以使运算简便。例14、解方程:思路点拨:注意到_,这样逆用分数加减法法则,可使计算简便。解:(五)巧去分母解方程当方程的分母含有小数,而小数之间又没有特殊的倍数关系时,若直接去分母则会出现比较繁琐的运算。为了避免这样的运算。应把分母化成整数。化整数时,利用分数的基本性质将各

    9、个分子、分母同时扩大相同的倍数即可。例15、解方程:1解:(六)巧组合解方程例16、解方程:思路点拨:按常规解法将方程两边同乘 化去分母,但运算较复杂,注意到左边的第一项和右边的第 项中的分母有公约数 ,左边的第 项和右边的第一项的分母有公约数 ,移项局部通分化简,可简化解题过程。解:(七)巧解含有绝对值的方程解含有绝对值的方程的基本思想是先去掉绝对值符号,转化为一般的一元一次方程。对于只含一重绝对值符号的方程,依据绝对值的意义,直接去绝对值符号,化为两个一元一次方程分别解之,即若|x|m,则_。例17、解方程:|x2|30解法一:解法二:举一反三:【变式1】5|x|163|x|4解析:【变式

    10、2】 解析:解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。(2)当括号内含有分数时,常由外向内先去括号,再去分母。(3)当分母中含有小数时,可用分数的基本性质化成整数。(4)运用整体思想,即把含有未知数的代数式看作整体进行变形。知识点七:一元一次方程的应用常见的一些等量关系类型基本数量关系等量关系(1)和、差、倍、分问题较大量较小量多余量总量倍数倍量抓住关键性词语(2)等积变形问题变形前后体积相等(3)行程问题相遇问题路程速度时间甲走的路程乙走的路程两地距离追及问题同地不同时出发:前者走的路程追者走的路程同时不同地出发:前者走的路程两地距离追者所走的路程顺逆流问题

    11、顺流速度静水速度水流速度逆流速度静水速度水流速度顺流的距离逆流的距离(4)劳力调配问题从调配后的数量关系中找相等关系,要抓住“相等”“几倍”“几分之几”“多”“少”等关键词语(5)工程问题工作总量工作效率工作时间各部分工作量之和1(6)利润率问题商品利润 商品利润率 100售价进价(1利润率)抓住价格升降对利润率的影响来考虑(7)数字问题设一个两位数的十位上的数字、个位上的数字分别为a,b,则这个两位数可表示为 抓住数字所在的位置,新数与原数之间的关系(8)储蓄问题利息本金利率期数本息和本金利息本金本金利率期数(1利息税率)(9)按比例分配问题甲乙丙abc全部数量各种成分的数量之和(设一份为x

    12、)(10)日历中的问题日历中每一行上相邻两数,右边的数比左边的数大 ;日历中每一列上相邻的两数,下边的数比上边的数大 。日历中的数a的取值范围是_,且都是正整数题型一:和、差、倍、分问题例18、牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只羊从了、后面跟上来,他对牧羊人说;“你赶的这群羊大概有100只吧。”牧羊人说:“如果给这群羊加上一倍,再加上原来的这群羊的一半,又加上原来这群羊的一半的一半,连你的这只也加上才刚好凑满100只”,牧羊人的这群羊一个有多少只?举一反三:1、某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工

    13、人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?2、已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?3、两个班组工人,按计划本月应共生产680个零件,实际第一组超额20、第二组超额15完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?4、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?题型二:等积变形问题例19、

    14、 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252mm内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数p314.)题型三:行程问题(1)行程问题中的三个基本量及其关系: 路程=速度时间。 (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。 例20. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开

    15、出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 例21.甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1

    16、小时乙到达A地.问甲、乙行驶的速度分别是多少?思路点拨:设甲的速度为千米/时,题目中所涉及的有关数量及其关系可以用下表表示:相遇前相遇后速度时间路程速度时间路程甲3+90乙3相遇前甲行驶的路程+_=相遇前乙行驶的路程;相遇后乙行驶的路程=相遇前甲行驶的路程.解:举一反三:【变式】甲、乙两地相距240千米,汽车从甲地开往乙地,速度为36千米/时,摩托车从乙地开往甲地,速度是汽车的。摩托车从乙地出发2小时30分钟后,汽车才开始从甲地开往乙地,问汽车开出几小时后遇到摩托车?解:总结升华:三个基本量关系是: 速度时间=路程分析方法辅助手段: 线段图分析法、列表分析法 顺水(风)速度静水(风)速度水流(

    17、风)速度 逆水(风)速度静水(风)速度水流(风)速度相遇问题: 甲的路程+乙的路程全程追及问题: (1)同地不同时:慢者行程先行路程快者路程(2)同时不同地:快者路程 慢者行程间隔距离环形跑道问题:(1)同时同向出发:快车走的路程慢车走的路程=环行跑道周长 (第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)过桥(洞):车进洞(上桥)到出洞(下桥)的总路程=车长+洞(桥)长题型四:劳力调配问题这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。例22. 机械

    18、厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:列表法。每人每天人数数量大齿轮16个x人16x小齿轮10个人 等量关系:小齿轮数量的2倍大齿轮数量的3倍题型五:工程问题工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。例23. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 举一反三:(1)甲每天生产某种零件8

    19、0个,3天能生产 个零件。(2)甲每天生产某种零件80个,乙每天生产某种零件x个。他们5天一共生产 个零件。(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天, 两人共生产 个零件。(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程 ;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的 。变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲乙合做,需几小时完成这件工作? 变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成? 变式3:一件工作,甲单独做2

    20、0小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成? 变式4:整理一批数据,有一人做需要80小时完成。现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?题型六:利润率问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率例24. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究题目中隐

    21、含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润x元8折(1+40%)x元80%(1+40%)x 15元等量关系:(利润=折扣后价格进价)折扣后价格进价=15(1)一件衣服的进价为x元,售价为60元,利润是_元,利润率是_.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为_. (2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是_元,利润率是_. 变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是_元,利润率是_. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_元.变式3:一件商品每件的进价为250元,按标价的

    22、九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?题型七:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(

    23、2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。例25. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数题型七:储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%)例26. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半

    24、年期的年利率是多少?(不计利息税)分析:等量关系:本息和=本金(1+利率)题型八:纳税问题 例27十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的15级税率情况见下表:税现行征税方法草案征税方法月应纳税额x税率速算扣除数月应纳税额x税率速算扣除数1x 5005%0x 1 5005%02500x2 00010%251 500x4 50010%32 000x5 00015%1254 500x9 00020%45 000x20 00020%3759 000x3

    25、5 00025%975520 000x40 00025%137535 000x55 00030%2 725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额。 “速算扣除数”是为了快捷简便计算个人所得税而设定的一个数。例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2 600元,他应缴税款可以用下面两种方法之一来计算:方法一:按13级超额累进税率计算,即5005% + 150010% + 60015% = 265(元)方法二:用“月应纳税额适用税率速算扣除数”计算,即260015% 125 = 265(元)(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人

    26、所得税1 060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴纳的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?举一反三: 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是( )住院医疗费(元)报销率(%)不超过500的部分0超过5001000的部分60超过10003000的部分80 A. 2600元 B. 2200元 C. 2575元 D. 2525元题型九:按比例分配问题这类问题的一般思路为:设其

    27、中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和总量。例28. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?题型十:日历中的问题例29.(1)在2006年8月的日历中(如图(1),任意圈出一竖列上相邻的三个数,设中间的一个数为a,则用含a的代数式表示这三个数(从小到大排列)分别是。(2)现将连续自然数1至2006按图中(如图(2)的方式排成一个长方形阵列,用一个长方形框出16个数。在图(2)中框出的这16个数的和是。在图(2)中,要使一个长方形框出的16个数之和分别等于2000、2006,是否可能?若不可能,试说明理由;若有可能,请求出该长方形

    28、框出的16个数中的最小数和最大数。思路点拨:(1)通过观察可以发现,一竖列上相邻的三个数,下面的数总比上面的数大_;(2)经观察不难发现,在这个长方形框里的16个数中,第一个数_与最后一个数_的和为_,第二个数与倒数第二个数,第三个数与倒数第三个数,它们的和都是_;设最小的数为a,由图(2)及(1)可知,这16个数分成8组,每组的两个数之和都是_。解:举一反三:变式1:在某张月历中, 一个竖列上相邻的四个数的和是50,求出这四个数.变式2:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?变式3:爷爷的生日那天的上、下、左、右4个日期的和为80, 你能说出我爷爷的生日是几号吗?变

    29、式4:王老师要参加三天培训,这三天恰好在日历的一竖排上且三个数字相连,并且这三个日子的数字之和是36,你知道王老师都要在几号参加培训吗?变式5:小明和小红作游戏,小明拿出一张日历说;“我用笔圈出了22的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?题型十一:比赛积分问题:例30.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?举一反三:1、足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比

    30、赛了8场,输了1场,得17分,请问:前8场比赛中,这支球队共胜了多少场? 这支球队打满14场比赛,最高能得多少分?通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?2、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了_道题。题型十二:配套问题:例题31、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产

    31、品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。一个盒身与两个盒底配成一套罐头盒。现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?题型十三:收费问题:例题32、某航空公司规定:一名乘客最多可免费携带20kg的行李,超过部分每千克按飞机票价的1.5购买行李票,一名乘客带了35kg的行李乘机,机票连

    32、同行李票共计1323元,求这名乘客的机票价格。例题33、根据下面的两种移动电话计费方式表,考虑下列问题 方式一方式二月租费30元月0本地通话费0.30元分钟0.40元分钟(1)一个月内在本地通话200分钟,按方式一需交费多少元?按方式二呢?(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?变式1:某市为鼓励市民节约用水,做出如下规定:用水量收费不超过 10 m30.5元/m310 m3以上每增加 1 m31.00 元/m3小明家 9月份缴水费 20元,那么他家 9月份的实际用水量是多少?变式2:我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方

    33、米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为_立方米.例题34、某同学去公园春游,公园门票每人每张5元,如果购买20人以上(包括20人)的团体票,就可以享受票价的8折优惠。(1)若这位同学他们按20人买了团体票,比按实际人数买一张5元门票共少花25元钱,求他们共多少人?(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)题型十六:方案设计与成本分析:1.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,

    34、每吨利润可达4500元,经精加工后销售每吨获利7500元。当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。你认为哪种方案获利最多?为什么2.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可

    35、获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润3. 某市剧院举办大型文艺演出,其门票价格为:一等席300元人,二等席200元人,三等席150元人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。4.某市的出租车计价规则如

    36、下:行程不超过3km,收起步价8元,超过部分每千米收费1.2元.某天张老师和三位学生去看望一学生,共乘了11km, 请你算一下张老师应付车费 元。5.据楚天都市报消息,武汉市居民生活用水价格将进行自1999年以来的第四次调整,试行居民生活用水阶梯式计量水价.拟定城市居民用水户(户籍人口4人及以内)每月用水量在22立方米及以内的,为第一级水量基数,按调整后的居民生活用水价格收取;超过22立方米且低于30立方米(含30立方米)的部分为第二级水量基数,按调整后价格的1.5倍收取;超过30立方米的部分为第三级水量基数,按调整后价格的2倍收取.已知调整后居民生活用水价格由现行的每立方米1.51元拟上涨到

    37、1.96元.市民张先生一家三口人,他按自己家庭月均用水量计算了一下,按目前新价格,他一个月要缴纳74.48元水费.请问张先生一家月均用水量是多少立方米?和调整前比较,他家每月平均多缴纳多少元水费?6. 小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)7. 某班将买一些乒乓球

    38、和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?8. 某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据行驶的路程的多少讨论用哪个公司的车比较合算?

    39、9.某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(ba),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。 分别用a、b表示用两种方式出售水果的收入。 若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好?10.育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元

    40、, 设需要仪器x件.(1)试用含x的代数式表示出两种方案所需的费用; (2)当所需仪器为多少件时, 两种方案所需费用一样多? (3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.11.某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。(1)、试求一个人要打电话30分钟,他应该选择那种通信业务?(2)、根据一个月通话时间,你认为选用哪种通信业务更优惠?12. 某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。现在全票价为240元,学生数为5人,请算一下哪家旅行社优惠?你喜欢哪家旅行社?如果是一位校长,两名学生呢?13.据电力部门统计,每天800至2100是用点高峰期,简称“峰时”,2100至次日800是用电低谷期,简称“谷时”。为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:一元一次方程整章复习经典版.doc
    链接地址:https://www.163wenku.com/p-5545265.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库