(完整版)概率论与数理统计复习提纲.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)概率论与数理统计复习提纲.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 概率论 数理统计 复习 提纲
- 资源描述:
-
1、第一章 随机事件及其概率一、随机事件及其运算1. 样本空间、随机事件样本点:随机试验的每一个可能结果,用表示;样本空间:样本点的全集,用表示;注:样本空间不唯一.随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,表示;必然事件就等于样本空间;不可能事件是不包含任何样本点的空集;基本事件就是仅包含单个样本点的子集。2. 事件的四种关系包含关系:,事件A发生必有事件B发生;等价关系:, 事件A发生必有事件B发生,且事件B发生必有事件A 发生;互不相容(互斥): ,事件A与事件B一定不会同时发生。对立关系(互逆):,事件发生事件A 必不发生,反之也成立; 互逆满足注:互不相容和对立的关系
2、(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。)3. 事件的三大运算事件的并:,事件A与事件B至少有一个发生。若,则;事件的交:,事件A与事件B都发生; 事件的差:,事件A发生且事件B不发生。4. 事件的运算规律交换律:结合律:分配律:德摩根(De Morgan)定律: 对于n个事件,有二、随机事件的概率定义和性质1公理化定义:设试验的样本空间为,对于任一随机事件都有确定的实值P(A),满足下列性质:(1) 非负性: (2) 规范性:(3)有限可加性(概率加法公式):对于k个互不相容事件,有.则称P(A)为随机事件A的概率.2概率的性质 若,则注:性质的逆命题不一定成立的. 如
3、若则。() 若,则。()三、 古典概型的概率计算古典概型:若随机试验满足两个条件: 只有有限个样本点, 每个样本点发生的概率相同,则称该概率模型为古典概型,。典型例题:设一批产品共N件,其中有M件次品,从这批产品中随机抽取n件样品,则(1)在放回抽样的方式下, 取出的n件样品中恰好有m件次品(不妨设事件A1)的概率为(2)在不放回抽样的方式下, 取出的n件样品中恰好有m件次品(不妨设事件A2)的概率为四、条件概率及其三大公式1.条件概率:2.乘法公式: 3.全概率公式:若,则。4.贝叶斯公式:若事件如全概率公式所述,且 .五、事件的独立 1. 定义:.推广:若相互独立,2. 在四对事件中,只要
4、有一对独立,则其余三对也独立。3. 三个事件A, B, C两两独立:注:n个事件的两两独立与相互独立的区别。(相互独立两两独立,反之不成立。)4.伯努利概型:1.事件的对立与互不相容是等价的。(X)2.若 则。(X)3.。 (X)4.A,B,C三个事件恰有一个发生可表示为。()5. n个事件若满足,则n个事件相互独立。(X)6. 当时,有P(B-A)=P(B)-P(A)。()第二章 随机变量及其分布一、随机变量的定义:设样本空间为,变量为定义在上的单值实值函数,则称为随机变量,通常用大写英文字母,用小写英文字母表示其取值。二、分布函数及其性质1. 定义:设随机变量,对于任意实数,函数称为随机变
5、量的概率分布函数,简称分布函数。 注:当时,(1)X是离散随机变量,并有概率函数则有(2) X连续随机变量,并有概率密度f (x),则.2. 分布函数性质:(1 F(x)是单调非减函数,即对于任意x1 x2,有;(2 ;且;(3离散随机变量X,F (x)是右连续函数, 即;连续随机变量X,F(x)在(-,+)上处处连续。注:一个函数若满足上述3个条件,则它必是某个随机变量的分布函数。三、离散随机变量及其分布1. 定义. 设随机变量X只能取得有限个数值,或可列无穷多个数值且,则称X为离散随机变量, pi (i=1,2,)为X的概率分布,或概率函数 (分布律).注:概率函数pi的性质: 2. 几种
6、常见的离散随机变量的分布:(1)超几何分布,XH(N,M,n),(2)二项分布,XB(n.,p),当n=1时称X服从参数为p的两点分布(或01分布)。若Xi(i=1,2,n)服从同一两点分布且独立,则服从二项分布。(3)泊松(Poisson)分布,四、连续随机变量及其分布1.定义.若随机变量X的取值范围是某个实数区间I,且存在非负函数f(x),使得对于任意区间,有则称X为连续随机变量; 函数f (x)称为连续随机变量X的概率密度函数,简称概率密度。注1:连续随机变量X任取某一确定值的概率等于0, 即注2:2. 概率密度f (x)的性质:性质1: 性质2:注1:一个函数若满足上述2个条件,则它必
7、是某个随机变量的概率密度函数。注2:当时,且在f(x)的连续点x处,有3.几种常见的连续随机变量的分布:(1) 均匀分布 , (2) 指数分布, (3) 正态分布 , 1. 概率函数与密度函数是同一个概念。( X )2.当N充分大时,超几何分布H (n, M, N)可近似成泊松分布。( X )3.设X是随机变量,有。( X )4.若的密度函数为=,则 ( X )第三章 随机变量的数字特征一、期望(或均值)1定义: 2期望的性质:3. 随机变量函数的数学期望4. 计算数学期望的方法(1) 利用数学期望的定义; (2) 利用数学期望的性质;常见的基本方法: 将一个比较复杂的随机变量X 拆成有限多个
展开阅读全文