(完整版)一元二次方程复习+培优.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)一元二次方程复习+培优.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 一元 二次方程 复习 培优
- 资源描述:
-
1、 一元二次方程复习+培优一 概念定义:只含有一个未知数整式方程,并且都可以化为ax2bx+c=0 (a、b、c为常数,a0)的形式,这样的方程叫做一元二次方程。注意: 满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2。(三个条件缺一不可)例: 若(m+1)+2mx-1=0是关于x的一元二次方程,则m的值是_练习:1、在,,,,中,是一元二次方程有_个 。2、要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则_. Aa0 Ba3 Ca1且b-1 Da3且b-1且c03、关于的x的一元二次方程方程(a-1)x2+x+a2-
2、1=0的一个根是0, 则a的值是_.4、一元二次方程的一般形式是 ;二次项系数是 ;一次项系数是;常数项是 。 二一元二次方程的解法一元二次方程的解法有:_.例:用适当的方法解下列方程(1) (2)(3 ) (4)(5) (6) (7) 练习:1.方程的两个根是等腰三角形的底和腰,则这个三角形的周长为 。2.方程的解是_3(2015绵阳)关于m的一元二次方程的一个根为2,则= 4.一元二次方程的一个根是1,且a,b满足等式,求此一元二次方程。三根的判别式1一元二次方程ax2bx+c=0 (a0)根的判别式: 当时,方程有两个不相等的实数根;(2) 当时,方程有两个相等的实数根; 当时,方程没有
3、实数根。以上三点反之亦成立。2一元二次方程有实数根注意:(1)在使用根的判别式之前,应将一元二次方程化成一般式; (2)在确定一元二次方程待定系数的取值范围时,必须检验二次项系数a0 (3)证明恒为正数的常用方法:把的表达式通过配方化成“完全平方式+正数”的形式。例:已知关于的方程。(1)求证:无论取什么实数值,这个方程总有实数根;(2)当等腰三角形ABC的边长4,另两边的长、恰好是这个方程的两根时,求ABC的周长。练习:1.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )A.k- B.k- 且k0 C.k- D.k 且k02.若一元二次方程 2x(kx4)x26
4、 0 无实数根,则k的最小整数值是( )A.1 B.2 C.3 D.43.当 时,是完全平方式.4.下面对于二次三项式-x2+4x-5的值的判断正确的是( ) A恒大于0 B恒小于0 C不小于0 D可能为05.(2009,潍坊)关于x的方程有实数根,则整数a的最大值是( )A.6 B.7 C.8 D.96.(2011 ,佳木斯)若关于x的一元二次方程无实数根,则一次函数的图像不经过( )象限。A.一 B.二 C.三 D.四7.(2012, 荆门)关于x的方程只有一解(相同的解算一解),则a的值为( )A.a =0 B.a=2 C.a=1 D.a=0或a=28.(2015广元)从3,0,1,2,
5、3这五个数中抽取一个敖,作为函数和关于x的一元二次方程中m的值若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是_9(2016江苏省扬州市)已知M=,N=(a为任意实数),则M、N的大小关系为()AMNBM=NCMND不能确定10(2016河北省)a,b,c为常数,且,则关于x的方程根的情况是()A有两个相等的实数根B有两个不相等的实数根C无实数根 D有一根为0四一元二次方程根与系数的关系一元二次方程根与系数的关系(韦达定理):设是一元二次方程ax2bx+c=0 (a0)的两根,则,2设是一元二次方程ax2bx+c=0 (a0)的两根,则:时,有时,有 时,有3.以两个
6、数为根的一元二次方程(二次项系数为1)是:例.1.设x1,x2是方程x2-3x1=0的两个根,利用根与系数的关系,求下列各式的值:(1) x13x24+x14x23; 2.(2013湖北荆门)设x1,x2是方程x2x20130的两个实数根,则x132014x22013 练习:1. 已知x1、x2是方程2x2+3x4=0的两个根,那么:x1+x2= ;x1x2= ; ;x21+x22= ;(x1+1)(x2+1)= ;x1x2= 。2. 关于x的方程2x2+(m29)x+m+1=0,当m= 时,两根互为倒数;当m= 时,两根互为相反数.3.方程的一个根为另一个根的2倍,则m= .4(2016四川
展开阅读全文