书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型中考数学四边形总复习.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5544434
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:33
  • 大小:39.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学四边形总复习.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 四边形 复习 下载 _中考其它_中考复习_数学_初中
    资源描述:

    1、中考数学四边形总复习 中考数学总复习 专题基础知识回顾五 四边形一、单元知识网络: 二、考试目标要求: 1探索并了解多边形的内角和与外角和公式,了解正多边形的概念2掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性3探索并掌握平行四边形的有关性质和四边形是平行四边形的条4探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条探索并了解等腰梯形的有关性质和四边形是等腰梯形的条6通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面, 并能运用这几种图形进行简单的镶嵌设计三、知识考点梳理知识点一、多边

    2、形的有关概念和性质1多边形的定义: 在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形2多边形的性质: (1)多边形的内角和定理:n边形的内角和等于(n-2)•180;(2)推论:多边形的外角和是360;(3)对角线条数公式:n边形的对角线有 条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形知识点二、四边形的有关概念和性质1四边形的定义: 同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形2四边形的性质: (1)定理:四边形的内角和是360;(2)推论:四边形的外角和是360知识点三、平行四边形1平行四边形的定义: 两组对边

    3、分别平行的四边形叫做平行四边形2平行四边形的性质: (1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分;3平行四边形的判定方法: (1)两组对边分别平行的四边形是平行四边形(定义);(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形;()对角线互相平分的四边形是平行四边形4面积公式: S=ah(a是平行四边形的一条边长,h是这条边上的高)知识点四、矩形1矩形的定义: 有一个角是直角的平行四边形叫做矩形2矩形的性质: 矩形具有平行四边形的所有性质;(1)矩形的对边平行且相

    4、等;(2)矩形的四个角都相等,且都是直角;(3)矩形的对角线互相平分且相等3矩形的判定方法: (1)有一个角是直角的平行四边形是矩形(定义);(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形4面积公式: S=ab(a、b是矩形的边长)知识点五、菱形1菱形的定义: 有一组邻边相等的平行四边形叫做菱形2菱形的性质: 菱形具有平行四边形的所有性质;(1)菱形的对边平行,四条边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角3菱形的判定方法: (1)有一组邻边相等的平行四边形是菱形(定义);(2)四条边都相等的四边形是菱形;(3)对角线互

    5、相垂直的平行四边形是菱形4面积公式: S=ah(a是平行四边形的边长,h是这条边上的高)或s= n(、n是菱形的两条对角线长)知识点六、正方形1正方形的定义: 有一组邻边相等的矩形叫做正方形;或有一个角是直角的菱形叫做正方形2正方形的性质: 正方形具有平等四边形、矩形、菱形的所有性质;(1)正方形的对边平行,四条边都相等;(2)正方形的四个角都是直角;(3)正方形的两条对角线相等,并且互相垂直平分;每条对角线平分一组对角;3正方形的判定方法: (1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形4面积公式:

    6、S=a2(a是边长)或s= b2(b正方形的对角线长)平行四边形和特殊的平行四边形之间的联系: 知识点七、梯形1梯形的定义: 一组对边平行而另一组对边不平行的四边形叫做梯形(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底(2)不平行的两边叫做梯形的腰(3)梯形的四个角都叫做底角2直角梯形: 一腰垂直于底的梯形叫做直角梯形3等腰梯形: 两腰相等的梯形叫做等腰梯形4等腰梯形的性质: (1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等(3)等腰梯形的对角线相等 等腰梯形的判定方法: (1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(

    7、3)对角线相等的梯形是等腰梯形6梯形中位线: 连接梯形两腰中点的线段叫梯形的中位线7面积公式: S= (a+b)h(a、b是梯形的上、下底,h是梯形的高)知识点八、平面图形的镶嵌1平面图形的镶嵌的定义: 用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺2平面图形镶嵌的条: (1)同种正多边形镶嵌成一个平面的条:周角是否是这种正多边形的一个内角的整倍数在正多边形里 只有正三角形、正四边形、正六边形可以镶嵌(2)n种正多边形组合起镶嵌成一个平面的条: n个正多边形中的一个内角的和的倍数是360; n个正多边形的边长相等

    8、,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数 倍四、规律方法指导1数形结合思想多边形是反映了数的抽象性与形的直观性这一对矛盾的对立统一,以及在一定条下的互相转化,由数构形,由形思数的数形结合思想尤其在平行四边形和矩形、菱形、正方形、梯形中,图形的特点非常鲜明,与我们现实生活的联系很大,利用它们的性质和判定能解决实际中的问题2分类讨论思想根据题目中的已知判断是哪种特殊的平行四边形,不同的特殊的平行四边形的性质和判定不同结合各自的特点进行分类,得出最终的结论3化归与转化思想要记清和分清平行四边形及特殊平行四边形的性质与判定,要体会化归思想的应用,如:多边形转化为三角形;平行四

    9、边形、梯形及特殊的平行四边形性质的讨论通过对角线转化为全等三角形等4注意观察、分析、总结在判断边相等或角相等的问题上,常以平行四边形、梯形及特殊的平行四边形的性质或判定为依据,当条结论的关系无法找到时,可以通过辅助线将图形适当变化,使条集中,以便应用条达到解题的目的,由繁变简,一般与特殊之间的转化四边形知识点间的联系 经典例题透析考点一、多边形及镶嵌 1若一个正多边形的内角和是其外角和的 倍,则这个多边形的边数是_ 考点:本题考查n边形的内角和公式:(n-2)•180和多边形的外角和是360解析:设正多边形边数为n,由题意得:(n-2)•180=3603,解得n=8,这

    10、个多边形的边数是八边 2下列正多边形中,能够铺满地面的是( ) A、正五边形 B、正六边形 、正七边形 D、正八边形考点:镶嵌的条:周角是这种正多边形的一个内角的整倍数思路点拔:在正多边形里只有正三角形、正四边形、正六边形可以镶嵌答案:B 3一个多边形从一个顶点共引出三条对角线,此多边形一定是( ) A四边形 B 五边形 六边形 D三角形思路点拔:n边形的对角线从一个顶点共引(n-3)条对角线解析:根据题意列式为n-3=3,n=6故选 4 一个同学在进行多边形内角和计算时,求得的内角和为112,当发现错了之后,重新检查,发现少了一个内角少了的这个内角是_度,他求的是_边形的内角和 思路点拔:一

    11、个多边形的内角和能被180整除,本题内角和112除以180后有余数,则少的内角应和这个余数互补解析:设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)•180=112+ x,n= n为整数,0x180,符合条的x只有13,解得n=9应填13、九总结升华:多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算举一反三:【变式1】如果一个多边形的每一个内角都相等,且每一个内角的度数为13,那么这个多边形的边数为( )A6 B7 8 D以上答案都不对思路点拔:在本题可利用外角去求边数,每个外角为4,外角和是360,有几个

    12、外角就有几条边解析:多边形的每个内角度数为13,每个外角为4又多边形外角和为360,边数=3604=8,故选【变式2】多边形的内角和随着边数的增加而_,边数增加一条时,它的内角和增加_度解析:多边形每增加一边,内角和就增加180答案:增加、180考点二、平行四边形 平行四边形的周长为40,两邻边的比为2:3,则这一组邻边长分别为_考点:平行四边形的边的性质思路点拔:掌握平行四边形的对边相等解析:ABD中,AB=D,B=AD,周长为40AB+B=20,又AB:B=2:3,令AB=2,B=3,2+3=20,解得=4,这一组邻边长分别为8和12 6 已知是ABD的对角线交点,A=24,BD=38,A

    13、D=14,那么B的周长等于_ 考点:平行四边形的对角线互相平分解析:ABD中,= A=12,B= BD=19,B=AD=14B的周长=B+B=19+12+14=4 7 如图,BD是ABD的对角线,点E、F在BD上,要使四边形AEF是平行四边形,还需要增加的一个条是_ 考点:平行四边形的判定思路点拔:本题可以利用平行四边形的判定中的一组对边平行且相等;也可以利用对角线互相平分判定等答案不唯一条一:增加的条为AFE=EF证明:AFE=EF,AFE,AFD=EBABD中,AD=B,ADB,ADF=BEADFBE,AF=E四边形AEF是平行四边形条二:增加的条为BE=DF解法一:可利用SAS证明ABE

    14、DF,ADFBE,得AE=F,AF=E四边形AEF是平行四边形解法二:连结A交BD于ABD中,A=,B=DBE=DF, B-BE=D-DF,得E=F四边形AEF是平行四边形总结升华:借助平行四边形的性质进行线段或角相等的证明,或利用平行四边形的判定条确定四边形的形状,是考查的重点举一反三:【变式1】在平行四边形ABD中,两条对角线A、BD相交于点,如右图,与AB面积相等的三角形有( )个A、1 B、2 、3 D、4解析:两条对角线分成的四个小三角形面积都相等,等底等高与AB面积相等的三角形有AD、D、B故选【变式2】如图,AB中AB=90,点D、E分别是A,AB的中点,点F在B的延长线上,且D

    15、F=A求证:四边形DEF是平行四边形考点:本题要求会综合运用所学的知识证明结论:(1)三角形的中位线性质;(2)直角三角形斜边的中线等于斜边的一半;(3)两组对边分别平行的四边形是平行四形证明:D、E分别是A,AB的中点,E是AB的中位线AE= AB,DEB 即DEFAB中AB=90,E是AB的中点,E= ABE=AE,A=EDDF=A,DF=ED,EDF四边形DEF是平行四边形考点三、矩形 8如图,矩形ABD的两条对角线相交于,AB=60,AB=8,则矩形对角线的长_考点:矩形的性质思路点拔:掌握矩形的对角线相等,会用一个角是60的等腰三角形是等边三角形解析:在矩形ABD中,A=BD,A=

    16、A,B= BDA=B,AB=60,AB是等边三角形A=AB=8,A=2A=16,故应填16 9 如右图,把一张矩形纸片ABD沿BD对折,使点落在E处且 与AD相交于点写出一组相等的线段_(不包括 和 )思路点拔:理解折叠前后图形的变化,BDBED,也可证出ABED,找出对应量相等解析:D=B或E=A、AB=ED、BE=AD等总结升华:矩形在平行四边形的基础上进一步特殊化,结合矩形的对角线平分且相等,会运用直角三角形斜边的中线等于斜边的一半这一性质举一反三:【变式1】四边形ABD的对角线相交于点,在下列条中,不能判定它是矩形的是( )AAB=D,AD=B,BAD=90BA=,B=D,A=BDBA

    17、D=AB=90,BD+AD=180DBAD=BD,AB=AD=90思路点拔:本题应结合图形去解决,掌握矩形的判定方法解析:A选项由AB=D,AD=B判定是ABD,再利用有一个角是直角的平行四边形是矩形可得;B选项由A=,B=D判定是ABD,再利用对角线相等的平行四边形是矩形;D选项由BAD=BD,AB=AD判定是ABD,再利用有一个角是直角的平行四边形是矩形可得;而选项却不能判定,举反例如直角梯形故选【变式2】矩形一个角的平分线分矩形一边成2和3,则这个矩形的面积为_考点:矩形的面积公式思路点拔:在没有图形的题中,画图时应考虑全面,本题体现了分类的思想,被分的两部分长度不确定解析:如图(1)若

    18、AE=3,ED=2,则矩形边长分别3和,面积为12如图(2)若AE=2,ED=3,则矩形边长分别2和,面积为102则这个矩形面积就为102和12 考点四、菱形 10在菱形ABD中,对角线A、BD交于点,A、BD的长分别为厘米、10厘米,则菱形ABD的面积为_厘米2 考点:菱形面积思路点拔:菱形的对角线互相垂直,面积公式有两个:(1)底乘高;(2)对角线乘积的一半解:菱形ABD的面积= ABD= 10=22 11能够判别一个四边形是菱形的条是() A对角线相等且互相平分 B对角线互相垂直且相等对角线互相平分 D一组对角相等且一条对角线平分这组对角考点:菱形的判定解析:A选项可判定为矩形;B选项不

    19、能判定是平行四边形,也不能判定是菱形;选项只能判定是平行四边形;D选项由等角对等边和三角形全等得到四条边都相等故选D总结升华:菱形在平行四边形的基础上进一步特殊化,菱形的对角线互相垂直,把菱形分成四个全等的直角三角形,常利用这一性质求线段和角,以及菱形的面积举一反三:【变式1】已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为 ( )A 4, 13 B 60, 120 90, 90 D 30, 10思路点拔:菱形的一条对角线与边长相等,则构成等边三角形,从而求出菱形的内角度数答案:B【变式2】如图,已知AD平分BA,DEA, DFAB, AE=(1)判断四边形AEDF的形状? (2)它

    20、的周长是多少?考点:菱形的判定思路点拔:利用一组邻边相等的平行四边形是菱形的判定方法证明证明:(1)AD平分BA, BAD=AD DEA, DFAB 四边形AEDF是平行四边形,AD=ADE BAD=ADE, AE=DE 平行四边形AEDF是菱形(2)平行四边形AEDF是菱形,AE= 菱形AEDF的周长=4AE=4=20【变式3】如图,菱形AB的边长为2,A=4,则点B的坐标为_ 思路点拔:利用数形结合的思想,可先求A点坐标,再向右平移2个单位解析:过A作AD于D,A=4,A=2,AD=D= ,A( , )AB=2,B(2+ , )考点五、正方形 12正方形具有而矩形不一定具有的特征是( )

    21、A四个角都是直角 B对角线互相平分 对角线互相垂直 D对角线相等思路点拔:正方形是满足矩形和菱形的所有性质正方形的对角线互相垂直,而矩形对角线则不一定互相垂直答案: 13如图,以A、B为顶点作位置不同的正方形,一共可以作( ) A1个 B2个 3个 D4个思路点拔:本题考查学生解题能力,容易将AB是对角线的情况忽略,而错误的选B解析:如图,共有3个 14图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少? 思路点拔:本题利用正方形的边长相等,及矩形的对边相等,设某个正方形的边长为x,并用x表示矩形的对这得出相应的方程,求出矩形的长和宽解:设右下方正方形的边长为

    22、 ,则左下方正方形的边长为 +1,左上方正方形的边长为 +2,右上方正方形的边长为 +3,根据长方形的对边相等可列方程2 + +1= +2+ +3,解这个方程得 =4,长方形的长为13,宽为11总结升华:正方形的性质很多,往往是在判定矩形或菱形的基础上再进一步判定正方形,做正方形的问题时,要考虑全面,有选择的运用正方形的知识解题举一反三:【变式1】下列选项正确的是( )A四边相等的四边形是正方形 B对角线互相垂直平分且相等的四边形是正方形对角线垂直的平行四边形是正方形 D四角相等的四边形是正方形考点:正方形的判定方法思路点拔:掌握正方形的判定方法要从边、角、对角线各方面考虑解析:A、选项能判定

    23、是菱形;D选项能判定是矩形;故应选B【变式2】正方形ABD中,对角线BD长为16,P是AB上任意一点,则点P到A、BD的距离之和等于_ 思路点拔:本题方法很多,(1)可以利用三角形面积去求:连接P,AB的面积等于AP和BP的面积之和;(2)也可证明矩形PEF,得PF=E,再证PE=AE,从而得出结论总之,P在AB上移动时,点P到A、BD的距离之和总等于对角线长的一半解析:PE+PF=A=8【变式3】(1)顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形 B、矩形 、菱形 D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形 B、矩形 、菱形

    24、D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形 B、矩形 、菱形 D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形 B、矩形 、菱形 D、正方形考点:中点四边形的判定由原四边形的对角线决定思路点拔:规律:顺次连结任意四边形四边中点所得的四边形一定是平行四边形;顺次连结对角线相等的四边形四边中点所得的四边形一定是菱形;顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是矩形;顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是正方形答案:(1)A (2) (3)B (4)D考点六、梯形

    25、1等腰梯形 中, , , , ,则梯形的腰长是_ 考点:等腰梯形的性质 思路点拔:梯形常作的辅助线是作梯形的高,将梯形分成一个矩形和两个直角三角形;本题也可平移一腰,将梯形分成一个平行四边形和一个等边三角形解析:过A作AED交B于EADE, E=AD=,AE=D,BE=B-E=9-=4梯形ABD是等腰梯形,AB=D,AB=AE=60,ABE是等边三角形 AB=BE=4,即梯形的腰长是4 16 如图,在梯形ABD中,ADB,AD=2,B=8,A=6,BD=8,则此梯形的面积是( ) (A)24 (B)20 ()16 (D)12 思路点拔:梯形常作的辅助线还有就是平移对角线,将梯形分成一个三角形以

    26、及一个平行四边形解析:过D作DEA交B延长线于E,可得E=AD,DE=A,BE=10,BDE的三边为6、8、10,BDE为直角三角形,ADB和ED等底等高,梯形ABD的面积等于BDE的面积即梯形ABD的面积=68 =24 17如图,在等腰梯形ABD中,ADB,A,BD相交于点有下列四个结论: A=BD;梯形ABD是轴对称图形;ADB=DA;ADAB其中正确的是( )(A) (B) () (D) 考点:本题考查的是等腰梯形的性质答案:总结升华:解决梯形问题时,辅助线是常用的方法,除上述辅助线之外,还可以延长两腰交于一点,构成三角形;若已知一腰中点,可连结一顶点和这个中点,构成两个全等的三角形举一

    27、反三:【变式1】已知梯形的上底长为3 ,中位线长为6 ,则下底长为_ 考点:梯形的中位线性质思路点拔:梯形的中位线平行两底,且等于上、下底和的一半答案:9【变式2】如图,梯形ABD中,ADB,E、F分别是AD、B的中点,AB和BD互余,若AD=4,B=10,则EF=_ 解析:过E作EAB,END,交B于、N,可求N=B-AD=10-4=6AB和BD互余,可得RtEN,再证EF是RtEP斜边上的中线,可求EF的长= N= 6=3【变式3】已知等腰梯形ABD,ADB ,E为梯形内一点,且 求证: 思路点拔:利用梯形的性质可证明三角形全等证明:在等腰梯形ABD中,AB=D,BAD=DAEA=ED,E

    28、AD=EDABAD-EAD=DA-EDA,即BAE=DEBAEDE,EB=E中考题萃1(北京市)(4分)若一个多边形的内角和等于720,则这个多边形的边数是( )A B6 7 D82(赤峰市)(3分)分别剪一些边长相同的正三角形,正方形,正五边形,正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有( )A B D都可以3(湖北省襄樊市)(3分)顺次连接等腰梯形四边中点所得四边形是( )A菱形 B正方形 矩形 D等腰梯形4(衡阳市)(3分)如图,在平行四边形 中, , 为垂足,如果 ,那么 的度数是( ) A B D (广州)(3分)如图,每个小正方形的边长为1,把阴影部分剪下,用

    29、剪下的阴影部分拼成一个正方形,那么新正方形的边长是( ) A B2 D 6(永春县)(3分)四边形的外角和等于_度7如图,在正五边形ABDE中,连结A,AD,则AD的度数是_ 8(佳木斯市)(3分)一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成其中的两个分别是正方形和正六边形,则第三个正多边形的边数是_9(江苏省宿迁市)(3分)若一个正多边形的内角和是其外角和的 倍,则这个多边形的边数是_ 10(安顺市)(4分)若顺次连接四边形各边中点所得四边形是菱形,则原四边形可能是_(写出 两种即可)11(赤峰市)(4分)如图,已知 平分 , , ,则 _ 12(佛市)(3分)如图,已知P是正方形A

    30、BD对角线BD上一点,且BP = B,则AP度数是_ 13(湖南省怀化市)(2分)如图,在平行四边形ABD中,DB=D、 ,E BD于E,则 _ 14(海南省)(3分)如图,在等腰梯形ABD中,ADB,AED,AB=6,则AE=_ 1(莆田市)(3分)如图,大正方形网格是由16个边长为1的小正方形组成,则图中阴影部分的面积是 _ 16(广州)(3分)如图,在梯形ABD中,ADB,AB=D,ABD,AD=6,B=8,则梯形的高为 17(莆田市)(3分)如图,四边形ABD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点 A落在B上的A1处,则EA1B=_度 18(湖北省荆门市)(

    31、3分)如图,矩形纸片ABD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为 EF,那么折痕EF的长为_ 19(江苏省宿迁市)(3分)如图,菱形ABD的两条对角线分别长6和8,点P是对角线A上的一个动点,点 、N分别是边AB、B的中点,则P+PN的最小值是_ 20(内蒙古)(6分)如图,在梯形 中,ADB, , ,AEBD于E, 求梯形 的高 21(湖北省荆州市)(6分)如图,矩形ABD中,点E是B上一点,AE=AD,DFAE于F,连结DE,求证:DF=D 22(北京市)(分)如图,在梯形 中, , , , , ,求 的长 23(湖北省荆门市)(10分)某人定制了一批地砖,每块地砖(如

    32、图(1)所示)是边长为04米的正方形ABD,点E、F分别在边B和D上,FE、ABE和四边形AEFD均由单一材料制成,制成FE、ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省? 答案与解析1B23A4D6360736 812 9八边 10矩形、等腰梯形、正方形、对角线相等的四边形 113 1222度 132 146 110167 1760 18 1920解:ADB,2=3 又AB=

    33、AD,1=3 AB=60 1=2=30 在RtABE中, , , AB=2 作AFB垂足为F, 在RtABF中, 梯形 的高为 21证明:AD=AE ADE=FED 又ADB ADE=DE DE=DEF 又DFAE,四边形ABD是矩形 DFE=90 又DE=DE DEFDE(AAS) DF=D22解法一:如图1,分别过点 作 于点 , 于点 又 , 四边形 是矩形 在 中, , 解法二:如图2,过点 作 ,分别交 于点 , 23解:(1) 四边形EFGH是正方形 图(2)可以看作是由四块图(1)所示地砖绕点按顺(逆)时针方向旋转90后得到的, 故E=F=GEF是等腰直角三角形因此四边形EFGH是正方形 (2) 设E=x, 则BE=04-x,每块地砖的费用为,那么 = x 30+ 04(04-x)20+=10(x -02x+024) =10(x-01)2+023 (0x04) 当x=01时,有最小值,即费用为最省,此时E=F=01 答:当E=F=01米时,总费用最省

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学四边形总复习.doc
    链接地址:https://www.163wenku.com/p-5544434.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库