中考第一轮复习三角形与全等三角形专题训练.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考第一轮复习三角形与全等三角形专题训练.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 第一轮 复习 三角形 全等 专题 训练
- 资源描述:
-
1、第14讲三角形与全等三角形考纲要求命题趋势1了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系2理解三角形内角和定理及推论3理解三角形的角平分线、中线、高的概念及画法和性质4掌握三角形全等的性质与判定,熟练掌握三角形全等的证明.中考中多以填空题、选择题的形式考查三角形的边角关系,通过解答题来考查全等三角形的性质及判定全等三角形在中考中常与平行四边形、二次函数、圆等知识相结合,考查学生综合运用知识的能力.知识梳理一、三角形的概念及性质1概念(1)由三条线段_顺次相接组成的图形,叫做三角形(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和
2、直角三角形2性质(1)三角形的内角和是_;三角形的一个外角等于与它不相邻的_;三角形的一个外角大于与它_的任何一个内角(2)三角形的任意两边之和_第三边;三角形任意两边之差_第三边二、三角形中的重要线段1三角形的角平分线三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线特性:三角形的三条角平分线交于一点,这个点叫做三角形的_2三角形的高线从三角形的一个顶点向它的对边所在的直线作_,顶点和垂足之间的线段叫做三角形的高线,简称高特性:三角形的三条高线相交于一点,这个点叫做三角形的_3三角形的中线在三角形中,连接一个顶点和它对边_的线段叫做三角形的中线特性:三角
3、形的三条中线交于一点,这个点叫做三角形的_4三角形的中位线连接三角形两边_的线段叫做三角形的中位线定理:三角形的中位线平行于第三边,且等于它的_三、全等三角形的性质与判定1概念能够_的两个三角形叫做全等三角形2性质全等三角形的_、_分别相等3判定(1)有三边对应相等的两个三角形全等,简记为(SSS);(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL)四、定义、命题、定理、
4、公理1定义对一个概念的特征、性质的描述叫做这个概念的定义2命题判断一件事情的语句(1)命题由_和_两部分组成命题通常写成“如果,那么”的形式,“如果”后面是题设,“那么”后面是结论(2)命题的真假:正确的命题称为_;错误的命题称为_(3)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的_,而第一个命题的结论是第二个命题的_,那么这两个命题称为互逆命题每一个命题都有逆命题3定理经过证明的真命题叫做定理因为定理的逆命题不一定都是真命题所以不是所有的定理都有逆定理4公理有一类命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断其他命题真伪的原始依据,这样的真命题叫做公理五、证明1证
5、明从一个命题的条件出发,根据定义、公理及定理,经过_,得出它的结论成立,从而判断该命题为真,这个过程叫做证明2证明的一般步骤(1)审题,找出命题的题设和结论;(2)由题意画出图形,具有一般性;(3)用数学语言写出已知、求证;(4)分析证明的思路;(5)写出证明过程,每一步应有根据,要推理严密3反证法先假设命题中结论的反面成立,推出与已知条件或是定义、定理等相矛盾,从而结论的反面不可能成立,借此证明原命题结论是成立的这种证明的方法叫做反证法自主测试1ABC的内角和为()A180 B360C540 D7202下列长度的三条线段,不能组成三角形的是()A3,8,4 B4,9,6C15,20,8 D9
6、,15,83如图,已知12,则不一定能使ABDACD的条件是()AABAC BBDCDCBC DBDACDA4下面的命题中,真命题是()A有一条斜边对应相等的两个直角三角形全等B有两条边和一个角对应相等的两个三角形全等C有一条边对应相等的两个等腰三角形全等D有一条高对应相等的两个等边三角形全等5如图,D,E分别是AB,AC上的点,且ABAC,ADAE.求证:BC.考点一、三角形的边角关系【例1】若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A1 B5 C7 D9解析:设第三边为x,根据三角形三边的关系可得43x34,即1x7.答案:B方法总结 1在具体判断时,可用较小的
7、两条线段的和与最长的线段进行比较若这两条线段的和大于最长的那条线段,则这三条线段能组成三角形否则就不能组成三角形2三角形边的关系的应用:(1)判定三条线段是否构成三角形;(2)已知两边的长,确定第三边的取值范围;(3)可证明线段之间的不等关系触类旁通1 已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A2 B3 C5 D13考点二、全等三角形的性质与判定【例2】如图,在RtABC中,BAC90,AC2AB,点D是AC的中点,将一块锐角为45的直角三角板AED如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证明你
8、的猜想解:BEEC,BEEC.证明如下:AC2AB,点D是AC的中点,ABADCD.EADEDA45,EABEDC135.又EAED,EABEDC.AEBDEC,EBEC.BECAED90.BEEC,BEEC.方法总结 1判定两个三角形全等时,常用下面的思路:有两角对应相等时找夹边或任一边对应相等;有两边对应相等时找夹角或另一边对应相等在具体的证明中,要根据已知条件灵活选择证明方法2全等三角形的性质主要是指全等三角形的对应边、对应角、对应中线、对应高、对应角平分线、周长、面积等之间的等量关系触类旁通2 如图,在ABC中,ACB90,ACBC,BECE于点E,ADCE于点D.求证:BECCDA.
展开阅读全文