书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型初二期中复习最短路径-角平分线-全等三角形综合汇总(DOC 13页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5543220
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:13
  • 大小:305.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初二期中复习最短路径-角平分线-全等三角形综合汇总(DOC 13页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初二期中复习最短路径-角平分线-全等三角形综合汇总DOC 13页 初二 期中 复习 路径 平分线 全等 三角形 综合 汇总 DOC 13
    资源描述:

    1、 (一)最短路径知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。(根据:两点之间线段最短.)二、 两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短 三、一点在两相

    2、交直线内部例1:已知:如图A是锐角MON内部任意一点,在MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.ABMNE例2:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)AOB. .ENCMD例3:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?FAOBD CH例4:如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处

    3、牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。四、 综合应用例1:如图,荆州古城河在CC处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD,EE(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,问如何恰当地架桥可使ADDEEB的路程最短?例2:(二)角平分线性质判定1、角平分线的性质定理:注意两点:(1)角平分线上的点到角两边的距离相等 (2)一对全等三角形 经典例题透析类型一:角平分线性质的应用 1、如图,ABC中,C=90,AD平分BAC,点D在BC上,且BC=24,CD:DB=3:5求:D到AB的距离。思路

    4、点拨:点到直线的距离是经过该点作直线的垂线,该点与垂足之间线段的长度。举一反三:【变式】如图,ACB=90,BD平分ABC交AC于D,DEAB于E,ED的延长线交BC的延长线于F. 求证:AE=CF类型二:角平分线的判定2、已知,如图,CEAB,BDAC,B=C,BF=CF。求证:AF为BAC的平分线。思路点拨:由已知条件与待求证的结论,应想到角平分线的判定定理。总结升华:应用角平分线定理及逆定理时不要遗漏了“垂直”的条件。如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性。举一反三:【变式】如图,已知AB=AC,AD=AE,DB与CE相交于O(1) 若DBAC,CEAB,D,E为垂足,试

    5、判断点O的位置及OE与OD的大小关系,并证明你的结论。(2) 若D,E不是垂足,是否有同样的结论?并证明你的结论。类型三、角平分线的综合应用一、已知角平分线,构造三角形例题:如图所示,在ABC中,ABC=3C,AD是BAC的平分线,BEAD于F。求证:二、已知一个点到角的一边的距离,过这个点作另一边的垂线段如图所示,1=2,P为BN上的一点,并且PDBC于D,ABBC=2BD。求证:BAPBCP=180。三、作垂线段当题目的已知中出现角平分线的时候,我们立刻想到它的作用有两种:1、把已知角平分两个相等的小角;2、角平分线性质定理,若此时作角的两边的垂线,则两条垂线段相等。例1 如图,已知:A=

    6、90,ADBC,P是AB的中点,PD平分ADC,求证:CP平分DCB。分析:因为已知PD平分ADC,所以我们过P点作PECD,垂足为E,则PA=PE,由P是AB的中点,得PB=PE,即CP平分DCB。证明:作PECD,垂足为E,APBDEC1234作图综合:如图1所示,校园内有两条公路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置距离两块宣传牌一样远,并且到两条公路的距离也一样远。请你画出灯柱的位置P。图1图2分析:线与线相交成点,所以要想作出满足条件的点,就相当于作出相应的两条直线,它们的交点就是所求作的点。2、直角三角形的全等问题:直角三角形的研究

    7、是整个中学几何图形部分里的重点!直角三角形有关的全等问题中,除了特用的HL定理之外,在条件的寻找上首先就有了一组直角相等;而多个直角,多个垂直的图形组合在一块时,就很容易利用“同(等)角的余角相等”来得到其他的角相等。图1例1:图1,已知DOBC,OC=OA,OB=OD,问CD=AB吗?变形1:请说明BCE是直角三角形。变形2:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,在同一条直线上,连结CD (彩图为提示)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:CDBE图2图1变形3、如图2,在ABC中,高AD与BE相交

    8、于点H,且AD=BD,问BHDACD,为什么?图2ABCEHD变形4:如图3, 已知EDAB,EFBC,BD=EF,问BM=ME吗?说明理由。图3ACMEFBD图4变形5:如图4,AD是一段斜坡,AB是水平线,现为了测斜坡上一点D的竖直高度DB的长度,欢欢在D处立上一竹竿CD,并保证CDAD,然后在竿顶C处垂下一根绳CE,与斜坡的交点为点E,他调整好绳子CE的长度,使得CE=AD,此时他测得DE=2米,于是他认定DB的高度也为2米,你觉得对吗?请说明理由。例二:如图1,已知,ACCE,AC=CE, ABC=CDE=90,问BD=AB+ED吗?图5分析 :(1)凡是题中的垂直往往意味着会有一组9

    9、0角,得到一组等量关系;(2)出现3个垂直,往往意味着要运用同(等)角的余角相等,得到另一组等量关系;(3)由全等得到边相等之后,还要继续往下面想,这几组相等的边能否组合在一起:如如图6,除了得到三组对应边相等之外,还可以得到AC=BD。图6变形1:如图7, 如果ABCCDE,请说明AC与CE的关系。注意:两条线段的关系包括:大小关系(相等,一半,两倍之类);位置关系(垂直,平行之类)图7变形2:如图,E是正方形ABCD的边DC上的一点,过点A作FAAE交CB的延长线于点F, 求证:DE=BF分析:注意图形中有多个直角,利用同角的余角相等或等式性质可到一组锐角相等。变形3:如图8,在ABC中,

    10、BAC=90,AB=AC,AE是过点A的直线,BDAE,CEAE,如果CE=3,BD=7,请你求出DE的长度。图8分析 :说明相等的边所在的三角形全等,题中“AB=AC”,发现:AB在RtABD中,AC在RtCAE中,所以尝试着去找条件,去说明它们所在的两个Rt全等(如图9)于是:已经存在了两组等量关系:AB=AC,直角=直角,再由多个垂直利用同角的余角相等,得到第三组等量关系。 变形4:在ABC中,ACB= 900,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E。(1)当直线MN绕点C旋转到图9的位置时,ADCCEB,且 DE=AD+BE。你能说出其中的道理吗?(2)当直线MN绕

    11、点C旋转到图10的位置时, DE =AD-BE。说说你的理由。图12图11(3)当直线MN绕点C旋转到图11的位置时,试问DE,AD,BE 具有怎样的等量关系?请写出这个等量关系。图1012 (三)等腰三角形、等边三角形的全等必备知识:如右图,由1=2,可得CBE=DBA;反之,也成立。例三:已知在ABC中,AB=AC,在ADE中,AD=AE,且1=2,请问BD=CE吗?分析这类题目的难点在于,需要将本来就存在于同一个三角形中的一组相等的边,分别放入两个三角形中,看成是一组三角形的对应边,关键还是在于:说明“相等的边(角)所在的三角形全等” 21图13变形2:过点A分别作两个大小不一样的等边三角形,连接BD,CE,请说明它们相等。 图15变形3:如图1618,还是刚才的条件,把右侧小等边三角形的位置稍加变化,连接BD,CE,请说明它们相等图16图17图18 13

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初二期中复习最短路径-角平分线-全等三角形综合汇总(DOC 13页).doc
    链接地址:https://www.163wenku.com/p-5543220.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库