初二数学八上第十二章全等三角形知识点总结复习和常考题型测验(DOC 8页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初二数学八上第十二章全等三角形知识点总结复习和常考题型测验(DOC 8页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二数学八上第十二章全等三角形知识点总结复习和常考题型测验DOC 8页 初二 数学 第十二 全等 三角形 知识点 总结 复习 题型 测验 DOC 下载 _其它资料_数学_初中
- 资源描述:
-
1、第十二章 全等三角形一、知识框架: 二、知识概念:1.基本定义:全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角形全等不因位置发生变化而改变。对应顶点:全等三角形中互相重合的顶点叫做对应顶点.对应边:全等三角形中互相重合的边叫做对应边.对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.全等三角形的性质:全等三角形的对应边相等,对应角相等.理解
2、:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。 (3)全等三角形的周长相等、面积相等。 (4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3.全等三角形的判定定理:边边边():三边对应相等的两个三角形全等.边角边():两边和它们的夹角对应相等的两个三角形全等.角边角():两角和它们的夹边对应相等的两个三角形全等.角角边():两角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4. 证明两个三角形全等的基本思路:5.角平分线:画法:性质定理:角平分线上的点到角的两边的距
3、离相等.性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)根据题意,画出图形,并用数字符号表示已知和求证.经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对
4、角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。常考例题精选3.(2015绥化中考)如图,A,B,C三点在同一条直线上,A=C=90,AB=CD,请添加一个适当的条件,使得EABBCD.4.(2015临沂中考)在RtABC中,ACB=90,BC=2cm,CDAB,在AC上取一点E,使EC=BC,过点E作EFAC交CD的延长线于点F,若EF=5cm,则AE=cm.5.(2015武汉中考)如图,点E,F在BC上,BE=CF,AB=DC,B=C.求证:A=D.6.(2015昆明中考)已知:如图,AD,BC相交于点O,OA=OD,ABCD.求证:AB=CD.7.(2015
5、大理中考)如图,点B在AE上,点D在AC上,AB=AD,请你添加一个适当的条件,使ABCADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明ABCADE的理由.8.(2015随州中考)如图,点F,B,E,C在同一直线上,并且BF=CE,ABC=DEF.能否由上面的已知条件证明ABCDEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使ABCDEF,并给出证明.提供的三个条件是:AB=DE;AC=DF;ACDF.9.(2015河源中考)如图,已知AB=CD,B=C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:AOBDOC
展开阅读全文