初中数学总复习基础测试题全套(DOC 137页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中数学总复习基础测试题全套(DOC 137页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学总复习基础测试题全套DOC 137页 初中 数学 复习 基础 测试 全套 DOC 137 下载 _其它资料_数学_初中
- 资源描述:
-
1、代数的初步知识基础测试一 填空题(本题20分,每题4分):1正方形的边长为a cm,若把正方形的每边减少1cm,则减少后正方形的面积为 cm2;2a,b,c表示3个有理数,用 a,b,c 表示加法结合律是 ;3x的与y的7倍的差表示为;4当 时,代数式的值是;5方程x3 7的解是答案:1(a1)2;2a(bc)(ab)c;3x7y;41;510二 选择题(本题30分,每小题6分):1下列各式是代数式的是( ) (A)S r (B)53 (C)3x2 (D)abc2甲数比乙数的大2,若乙数为y,则甲数可以表示为( ) (A)y2 (B)y2 (C)7y2 (D)7y23下列各式中,是方程的是(
2、) (A)257 (B)x8 (C)5xy7 (D)axb 4一个三位数,个位数是a,十位数是b,百位数是c,这个三位数可以表示为( ) (A)abc (B)100a10bc (C)100abc (D)100c10ba 5某厂一月份产值为a万元,二月份增产了15%,二月份的产值可以表示为( ) (A)(115%) a 万元 (B)15%a 万元 (C)(1a)15% 万元 (D)(115%)2 a 万元答案:1;2;3;4;5三 求下列代数式的值(本题10分,每小题5分):12x2x1 (其中x );解:2x2x12110;2 (其中 ) 解: 四 (本题10分)如图,等腰梯形中有一个最大的圆
3、,梯形的上底为5cm,下底为7cm,圆的半径为3cm,求图中阴影部分的面积解:由已知,梯形的高为6cm,所以梯形的面积S为 ( ab )h ( 57)6 36(cm2)圆的面积为 (cm2)所以阴影部分的面积为 (cm2)五 解下列方程(本题10分,每小题5分): 15x8 2 ; 2x6 21 解:5x 10, 解:x 15, x 2 ; x 1515 25六 列方程解应用问题(本题20分,每小题10分):1甲乙两人练习赛跑,如果甲让乙先跑10米,甲跑5秒就能追上乙;若甲每秒 跑9米,乙的速度应是多少? 解:设乙的速度是每秒x米,可列方程 (9x)5 10, 解得 x 7 (米/秒)2买三支
4、铅笔和一支圆珠笔共用去2元零5分,若圆珠笔的售价为1元6角,那么铅笔的售价是多少? 解:设铅笔的售价是x 元,可列方程 3x1.6 2.05, 解得 x 0.15(元)有理数测试题一 填空题(每小题4分,共20分):1下列各式12,0,(4),5,(3.2),0.815的计算结果,是整数的有_,是分数的有_,是正数的有_,是负数的有_; a的相反数仍是a,则a_; a的绝对值仍是a,则a为_;绝对值不大于的整数有_; 700000用科学记数法表示是_ _,近似数9.105104精确到_ _位,有_有效数字二 判断正误(每小题3分,共21分): 10是非负整数( ) 2若ab,则|a|b|( )
5、 32332( ) 473(7)(7)(7)()5若a是有理数,则a20( ) 6. 若a是整数时,必有an0(n是非0自然数) ( ) 7. 大于1且小于0的有理数的立方一定大于原数( )三 选择题(每小题4分,共24分):平方得4的数的是( ) (A)2 (B)2 (C)2或2 (D)不存在下列说法错误的是( )(A)数轴的三要素是原点,正方向、单位长度(B)数轴上的每一个点都表示一个有理数(C)数轴上右边的点总比左边的点所表示的数大(D)表示负数的点位于原点左侧下列运算结果属于负数的是( )(A)(1987) (B)(19)817 (C)(198)7 (D)1(97)(8)一个数的奇次幂
6、是负数,那么这个数是( )(A)正数 (B)负数 (C)非正数 (D)非负数若ab|ab|,必有( )(A)ab不小于0 (B)a,b符号不同 (C)ab0 (D)a0 ,b0,0.2,0.22三个数之间的大小关系是( ) (A)0.20.22 (B)0.20.22 (C)0.220.2 (D)0.20.22四 计算(每小题7分,共28分): ()(4)20.25(5)(4)3;24(2)25()0.25; ()(18)1.9561.450.4五 (本题7分) 当,时,求代数式3(ab)26ab的值一、答案:1、12,0,(4),5,;,(3.2),0.815;(4),0.815;12,5,(
7、3.2)2、答案:0解析:应从正数、负数和0 三个方面逐一考虑再作判断结果应为a03、答案:负数或0解析:应从正数、负数和0 三个方面逐一考虑再作判断结果应为负数4、答案:0,1,2解析:不大于的整数包括2,不小于的整数包括2,所以不应丢掉25、答案:7105;十;4个解析:70000071000007105;9.1051049.105100091050,所以是精确到十位;最后的0前的数字5直到左面第一个不是0的数字9,共有4个数字,所以有4个有效数字二、1、答案: 解析:0既是非负数,也是整数2、答案: 解析:不仅考虑正数,也要考虑负数和0 当a0,b0 时,或a0且b0时, |a|b|都不
8、成立3、答案: 解析:232228,32339,所以23324、答案: 解析:73不能理解为735、答案:解析:不能忘记0当a0时,a2 06、答案: 解析:注意,当a0时,a的奇次方是负数,如(3)3 2707、答案: 解析:大于1且小于0的有理数的绝对值都是小于1的正数,它们的乘积的绝对值变小;又,大于1且小于0的有理数的立方一定是负数,所以大于1且小于0的有理数的立方一定大于原数三、1、答案:C 解析:平方得4的数不仅是2,也不仅是2,所以答2或2才完整2、答案:B解析:虽然每一个有理数都可以用数轴上唯一的一个点来表示,但是数轴上的每一个点不都表示一个有理数3、答案:B.解析:负数的相反
9、数是正数,所以(A)和(C)是正数;“减去负数等于加上它的相反数(正数)”所以(D)也是正数;只有(B):(19)817 8817 6417 81可知只有(B)正确4、答案:B解析:正数的奇次幂是正数,0的奇次幂是0,所以(A)、(C)(D)都不正确5、答案:A解析:(B)显然不正确;(C)和(D)虽然都能使ab|ab|成立,但ab|ab|成立时,(C)和(D)未必成立,所以(C)和(D)都不成立6、答案:D解析:比较各绝对值的大小由于0.23,所以有,则有0.20.22四、1、答案:90 解析:注意运算顺序,且0.25 ()(4)20.25(5)(4)3 ()160.25(5)(64) (5
10、)2(16)(5) 1080 90 应注意,计算1080 时应看作10 与80 的和2、答案:10解析:注意242222 16,再统一为分数计算: 24(2)25()0.25 16()2() 16()2() 12() 12 3、答案:50解析:注意统一为真分数再按括号规定的顺序计算: 252 50注意分配律的运用4、答案:17.12.解析:注意分配律的运用,可以避免通分()(18)1.9561.450.4 1415711.70.58 611.12 17.12五、答案:解析:3(ab)26ab 3(1 3()26 3 .整式的加减基础测试一填空题(每小题3分,共18分):下列各式 ,3xy,a2
11、b2,2x 1,x,0.5x中,是整式的是 ,是单项式的是,是多项式的是 答案:、3xy、a2b2、x、0.5x,、3xy、x,a2b2、0.5x评析: 虽然有分数线,但是分母中不含有表示未知数的字母,所以它仍是整式;另一方面,有 x y所以我们认为它是多项式在运用换元法时把它看作一个整体,也可以暂时看作单项式 2a3b2c的系数是,次数是; 答案:,评析:不能说a3b2c “没有系数”也不能说“它的系数是0”,实际上a3b2c 1a3b2c,系数“1”被省略了单项式的次数是所有字母的指数和,在这里,字母c的指数“1” 被省略了,所以字母的指数和是“321 6”,而不是“5” 3xy5x46x
12、1是关于x 的次项式;答案:,评析:把组成多项式的各单项式中最高次项的次数作为这个多项式的次数2x2ym与xny3是同类项,则 m ,n; 答案:,评析:根据同类项的意义“相同字母的指数也相同”可得 53ab5a2b24a34按a降幂排列是;答案:4a35a2b23ab46十位数字是m,个位数字比m小3,百位数字是m的3倍,这个三位数是答案:300m10m(m3)或930评析:百位数应表示为1003m 300m一般地说,n位数 an10n1an110n2an210n3 a3102 a210a1如 5273 510321027103 因为 解得m 3所以300m10m(m3)930二判断正误(每
13、题3分,共12分):3,3x,3x3都是代数式( )答案:评析:3,3x都是单项式,3x3是多项式,它们都是整式,整式为代数式的一部分7(ab)2 和 (ab)2 可以看作同类项( )答案:评析:把(ab)看作一个整体,用一个字母(如m)表示,7(ab)2 和 (ab)2就可以化为 7m2和m 2,它们就是同类项34a23的两个项是4a2,3( )答案:评析:多项式中的“项”,应是包含它前面的符号在内的单项式,所以4a23的第二项应是3, 而不是34x的系数与次数相同( )答案:评析:x的系数与次数都是1三化简(每小题7分,共42分):1a(a22a )(a 2a2 ); 答案:3a22a评析
14、:注意去括号法则的应用,正确地合并同类项a(a22a)(a2a2 ) aa22aa2a2 3a22a23(2a3b)(6a12b);答案:8a5b评析:注意,把 3 和 分别与二项式相乘的同时去掉括号,依乘法法则,括号内的各项都应变号 3 2a3b)(6a12b) 6a9b2a4b 8a5b(a )2b2 (b2);答案:a 22b2评析:注意多层符号的化简,要按次序逐步进行 (a )2b2 (b2) a 2b2 b2 a 2b2 b2 a 2b2 b2 a 22b2这里,(b2 ) b2 的化简是按照多重符号化简“奇数个负号结果为负”进行的; a 2b2 a 2b2,a 2b2 a 2b2
15、去括号法则进行的要分析情况,灵活确定依据 9x27(x2y)(x2y)1;答案:x2 3y评析:注意区别情况,恰当引用法则,按次序逐步进行 9x27(x2y)(x2y)1 9x27x2 2yx2y1 9x27x2 2yx2y1 3x2 y(3xn210xn7x)(x9xn2 10xn);答案:12xn220xn8x评析:注意字母指数的识别 (3xn210xn7x)(x9xn2 10xn) 3xn210xn7xx9xn210xn 12xn220xn8xab 3a2b(4ab2ab)4a2b3a2b答案:4a2b4ab2 ab评析:注意多层括号的化简,要按次序由内而外逐步进行,并且注意随时合并同类
展开阅读全文