书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型初三数学上期末总复习人教版各章节重点题型1(DOC 15页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5542797
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:17
  • 大小:745KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初三数学上期末总复习人教版各章节重点题型1(DOC 15页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初三数学上期末总复习人教版各章节重点题型1DOC 15页 初三 数学 上期 复习 人教版 各章 重点 题型 DOC 15 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、初三上数学期末总复习-典型例题选讲(各章节重点、常考题型)一、 二次根式例题1:若式子有意义,则x的取值范围为( ) A、x2 B、x3 C、x2或x3 D、x2且x3例题2:实数a在数轴对应点如图所示, 则的值是( ) (A)2a+2 (B)2a-2 (C)2 (D)-2例题3:下列根式中属最简二次根式的是() A. B. C. D.例题4:在下列各组根式中,是同类二次根式的是( )A和B和 C例题5:填空: 1)计算:= 2)若,则mn的值为 3)比较大小: (填“”或“”) 4)若x2,化简的正确结果是 _.例题 6:计算: (1) (2) 例题7:先化简再求值:,其中。例题8:如下图,

    2、实数a、b 在数轴上的位置,化简 - - . abo1-1 例题9:已知,计算的值。二、二次方程例题1:下列方程是一元二次方程的有_ (1) ; (2) ; (3) =0; (4) ; (5) ; (6) .例题2:方程4x2=13-2x化为一般形式为_,它的二次项是_, 一次项是_,常数项是_. 它的二次项系数是_, 一次项系数是_,常数项是_.例题3:当m=_时,关于x的方程(m-2)x2+mx=5是一元一次方程; 当m_时,关于x的方程(m-2)x2+mx=5是一元二次方程。 关于x的方程是一元二次方程,则k的值为_例题4:解方程: (1)直接开方法4(1x)29=0 (2)配方法 (3

    3、)公式法 (3)十字相乘 (5)因式分解 (6) 例题5:若关于x的方程有两个不相等的实数根,则m的取值范围是_例题6:不论m取何值,方程都有两个不相等的实数根。例题7:已知方程的两根是,不解方程,求下列各式的值。 (1) (2) (3) (4)例题8:已知关于x的方程的两个根为-5和7,求m-n例题9:应用题1、面积问题: 如图, 东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园, 矩形的一边用教学楼的外墙,其余三边用竹篱笆. 设矩形的宽为x,面积为y.(1) 求y与x的函数关系式,并求自变量x的取值范围;(2) 生物园的面积能否达到210平方米?说明理由. 2、 传

    4、染、分支问题: 某养鸡场突发禽流感疫情,某养鸡场一只带病毒的小鸡经过两天的传染后使鸡场共有121只小鸡遭感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡?3、循环问题: 一个小组有若干人,新年互送贺年卡一张。已知全组共送贺年卡169张,求这个小组的人数。4、 工程问题: 甲、乙两工程队各承包1000米道路维修工程,已知甲比乙每天完成的工程量比甲多10米,结果甲比乙少用5天时间,问甲乙每一天各个完成多少米。5、增长率问题 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助。2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计

    5、划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元。(1)求A市投资“改水工程”年平均增长率;(2)A市三年共投资“改水工程”多少万元?6、商品价格问题 百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元。为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现:如果每件童装降价1元,那么平均每天就可以多售出2件。(1)要项平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?(2)若要使百货商店平均每天盈利最多,请你帮助设计方案。三、旋转例题1:如图所示的四组图形中,左边图形与右边图形成中

    6、心对称的有( ) A1组 B2组 C3组 D4组例题2:如图所示,其中是中心对称图形的是( ) 例题3:如图4,P为正方形ABCD内的一点,ABP绕点B顺时针旋转得到CBE,则PBE的度数是( ) A、 B、 C、 D、 图3 图4 例题4:如图4,AOB=90,B=30,AOB可以看作是由AOB绕点O顺时针旋转角度得到的 若点A在AB上,则旋转角的大小可以是( ) A、 B、 C、 D、例题5:如图,四边形ABCD是边长为1的正方形,且DE=,ABF是ADE的旋转图形 (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少? (4)如果连结EF,那么AEF是怎样的三角形? 例

    7、题6:在正方形网格中建立如图所示的平面直角坐标系ABC的三个顶点都在格点上, 点A的坐标是(4,4 ),请解答下列问题;(1)先将ABC向左平移6个单位得到,再作出画出ABC关于X轴对称的;(2)做出ABC关于原点对称的三角形。(3)将绕点C顺时针旋转90 例题7:如图所示,正方形ABCD的BC边上有一点E,DAE的平分线交CD于F,试用旋转的思想方法说明AE=DF+BE 例题8:如图1,点O是线段AB的中点,分别以AO和OB为边在线段AB的同侧作等边三角形OAM和等边三角形OBN,连结AN、BM相交于点P(1)证明; (2)求的大小;(3)如图2,若OAM固定,将OBN绕着点O旋转角度如图,

    8、OBN形状和大小不变,试探究大小是否发生变化,并对结论给予证明图2图1四、圆例题1:1).如图1,内接于,若,则的大小为( ) A BCD图2 图1CABO 图32)如图2,AB是O的直径,ABC=30,则BAC =( )A90 B60 C45 D303)、如图3,的直径,弦,则弦的长为( ) ABCD例2. 如图,AB、CD是O的直径,DF、BE是弦,且DF=BE 求证:D = B.例4. 如图所示,O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,CEA30,求CD。OEDCBA例5.如图所示,已知AB为O的直径,CD是弦,且ABCD于点E。连接AC、OC、BC。(1)求证:AC

    9、O=BCD。(2)若EB=,CD=,求O的面积。EDBAOC例题6:如图,PA,PB分别为O的切线,AC为直径,切点分别为A、B,P=70,则C= 例题7:圆最长弦为12,如果直线与圆相交,且直线与圆心的距离为,那么( ) A B C D例题8:两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d的取值范围是( ) Ad8 B0d2 C2d8 D0d2或d8:例题9:已知:如图,AB是O的直径,BC是和O相切于点B的切线,O的弦AD平行于OC 求证:DC是O的切线例题10:如图,O的直径AB=6,C为圆周上的一点,BC=3.过点C作O的切线GE,作ADGE于点D, 交O于点F. 求:(1)

    10、求证:ACG=B, (2)计算线段AF的长. G 例题11:已知:如图,PA,PB,DC分别切O于A,B,E点 (1)若P=40,求COD;(2)若PA=10cm,求PCD的周长 例题12:如图,在中,以为直径的分别交、于点、,点在的延长线上,且. 求证:直线是的切线; 若,BE:AB=1:2,求和的长.例题13:矩形ABCD的边AB=8,AD=6,现将矩形ABCD放在直线l上且沿着l向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),求顶点A所经过的路线长例题14:如图所示的扇形中,半径R=10,圆心角=144用这个扇形围成一个圆锥的侧面. (1) 求这个圆锥的底面半径r; (2)

    11、求这个圆锥的高. 例题15:如图,已知一底面半径为3,母线长为9的圆锥,在地面圆周上有一蚂蚁位于A点,它从A点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长. 例题16:(2012广州中考题)如图1,O中AB是直径,C是O上一点,ABC45,等腰直角三角形DCE中DCE是直角,点D在线段AC上(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MNOM;(3)将DCE绕点C逆时针旋转(00900)后,记为D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1OM1是否成立?若成立,请证明;若不成

    12、立,说明理由图3图4例题17:(广州2013-24)已知是的直径,点在线段的延长线上运动,点在上运动(不与点重合),连接,且.(1) 当时(如图12),求证:是的切线;(2) 当时,所在直线于相交,设另一交点为,连接. 当为中点时,求的周长; 连接,是否存在四边形为梯形?若存在,请说明梯形个数并求此时的值;若不存在,请说明理由.五、 概率例题1:下列事件中,属于不确定事件的有( ) 太阳从西边升起; 任意摸一张体育彩票会中奖; 掷一枚硬币,有国徽的一面朝下; 小明长大后成为一名宇航员 AB CD例题2:下列说法错误的是( ) A必然发生的事件发生的概率为1 B不可能发生的事件发生的概率为0 C

    13、不确定事件发生的概率为0 D随机事件发生的概率介于0和1之间例题3:某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人, 则选出的恰为一男一女的概率是 ( ) ABCD例题4:甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;红黄蓝(2)你认为这个游戏公平吗?请说明理由例题5:一家医院某天

    14、出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中, 求出现1个男婴、2个女婴的概率是多少?例题6:如图,(1),A、B两个转盘分别被分成三个、四个相同的扇形,分别转动A盘、B盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止)。(1)用列表(或画树状图)的方法,求两个指针所指的区域内的数字之和大于7的概率。(第3题图)(2)如果将图(1)中的转盘改为图(2),其余不变,求两个指针所知区域的数字之和大于7 的概率。例题7:小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选于是小明设计了如下游戏来决定谁先挑选游戏规则是:在一个不透明

    15、的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由六、二次函数例1:若是二次函数,则_ 例2:抛物线的开口方向是 ;顶点为 ;对称轴是 ;最值是 ;例3:已知函数的图像关于y轴对称,则m_.例4:函数的图象与轴有交点,则的取值范围是( ) A、B、 C、 D、例5:二次函数的图像沿轴向左平移2个单位,再沿轴向上平移3个单位, 得到的图像的函数解析式为,则

    16、b与c分别等于( ) A、6,4 B、8,14 C、6,6 D、8,14例题6:函数的图像如图所示,则a、b、c,的 符号为_ 例题7:在同一坐标系中一次函数和二次函数的图象可能为( )。 例题8:函数y=ax2-a与y= (a0)在同一直角坐标系中的图像可能是( ) (A) (B) (C) (D) 例题9:根据下列条件求关于x的二次函数的解析式(1) 抛物线过(1,0),(3,0),(1,5)三点. (2)当x=3时,y最小值=-1,且图像过(0,7).(3)与x轴交点的横坐标分别是x1=-3,x2=1时,且与y轴交点为(0,-2).(4) 抛物线在x轴上截得的线段长为4,且顶点坐标是(3,

    17、2).(5)二次函数的图像经过点(1,0),(3,0),且最大值是3.例题10:如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃设花圃的宽AB为x m,面积为S m2(1)求S与x的函数关系式;(2)如果要围成面积为45 m2的花圃,AB的长是多少米?(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由例题11:水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利60

    18、00元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?例题12:某产品每件成本10元,试销阶段每件产品的销售价 x(元)与产品的日销售量 y(件)之间的关系如下表x(元)152030y(件)252010若日销售量 y 是销售价 x 的一次函数。 (1)求出日销售量 y(件)与销售价 x(元)的函数关系式; (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?例题13:有一座抛物线桥洞,已知桥下水面离桥拱顶部3m时,水面宽为6m,当水位上升0.5m时:(1)求水面的宽度为多少米?(2)有

    19、一艘游船,它左右两边缘最宽处有一个长方体形状的遮阳棚,此船能否通过上述桥洞。若游船宽(船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过?若从水面到棚顶的高度为m的游船刚好能从桥洞下通过,则这艘游船的最大宽度是多少米? OCAEDByx321123-3-2-1例题14:如图,在直角坐标系中,点A的坐标为(2,0),连结OA,将线段OA绕原点O顺时针旋转120,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由.BAOyx

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初三数学上期末总复习人教版各章节重点题型1(DOC 15页).doc
    链接地址:https://www.163wenku.com/p-5542797.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库