北师大版数学必修四:《正切函数的诱导公式》导学案(含解析)(DOC 11页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版数学必修四:《正切函数的诱导公式》导学案(含解析)(DOC 11页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正切函数的诱导公式 北师大版数学必修四:正切函数的诱导公式导学案含解析DOC 11页 北师大 数学 必修 正切 函数 诱导 公式 导学案 解析 DOC 11 下载 _必修4_北师大版_数学_高中
- 资源描述:
-
1、第8课时正切函数的诱导公式1.用类比的方法学习、熟记正切函数的诱导公式. 2.了解正切函数诱导公式的特点,能利用正切函数诱导公式解决简单的问题.前面我们学习了正弦函数、余弦函数的诱导公式,知道角与形如k(kZ)的正弦、余弦函数值的关系,那么角的正切函数值是否也有相应的关系式呢?今天我们就来探讨一下这个问题.问题1:下列各角的终边与角的终边的关系角2k+(kZ)+-图示与角终边的关系 角-+图示与角终边的关系 问题2:请根据点的对称性推导“-,+,-”的诱导公式.设角与单位圆的交点为(a,b),(1)-与的终边与单位圆的交点关于x轴对称,-与单位圆的交点为(a,-b).sin(-)=-sin ,
2、cos(-)=cos ,tan(-)=.(2)+与的终边与单位圆的交点关于原点对称,+与单位圆的交点为(-a,-b).sin(+)=-sin ,cos(+)=-cos ,tan(+)=.(3)-与的终边与单位圆的交点关于y轴对称,-与单位圆的交点为(-a,b),sin(-)=sin ,cos(-)=-cos ,tan(-)=.问题3:形如“-,+”的诱导公式的推导设角与单位圆的交点为(a,b),(1)-的终边与x的终边关于y=x对称,与单位圆交点坐标称为(b,a),sin(-)=cos ,cos(-)=sin ,tan(-)=.(2)+的终边即的终边逆时针旋转90,与单位圆交点坐标为(-b,a
3、),sin(+)=cos ,cos(+)=-sin ,tan(+)=.问题4:正切函数的诱导公式有哪些?(1)tan(+k)=,其中kZ.(2)tan(-)=.(3)tan(-)=.(4)tan(+)=.(5)tan(2-)=.(6)tan(+)=.(7)tan(-)=.1.已知cot(-)=,则tan(-)的值是().A.-B.C.-D.2.函数y=tan x+sin x-|tan x-sin x|在区间(,)内的图像大致是().3.函数y=|tan x|的单调递减区间是.4.已知tan(+)=2,求tan(-)的值.利用正切函数诱导公式化简求的值.利用诱导公式证明三角恒等式设tan(+)=
4、a,求证:=.利用正切函数诱导公式求值已知角终边上的一点A(,-1),求的值.化简:.求证:=-tan .已知为第四象限角,且tan 是方程x2-x-12=0的一个根,求的值.1.下列不等式中,正确的是().A.tantanB.tantanC.tan(-)tan(-)2.化简的值是().A.- B.-1 C.1 D.3.sincostan(-)的值是.4.已知角终边上一点P(2,4),求的值.已知f()=,(1)化简f();(2)若cos(-)=,求f(-);(3) 若=-1860,求f().考题变式(我来改编):第8课时正切函数的诱导公式知识体系梳理问题1:相同 关于原点对称关于x轴对称 关
展开阅读全文