书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型北师大版平方差公式练习题精选(完整版)(DOC 5页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5540135
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:6
  • 大小:498KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《北师大版平方差公式练习题精选(完整版)(DOC 5页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北师大版平方差公式练习题精选完整版DOC 5页 北师大 平方 公式 练习题 精选 完整版 DOC
    资源描述:

    1、仅供个人参考For personal use only in study and research; not for commercial use平方差公式1、利用平方差公式计算: 3利用平方差公式计算(1)(m+2) (m-2) (1)(1)(-x-y)(-x+y)(2)(1+3a) (1-3a) (2)(x-2y)(x+2y)(3) (x+5y)(x-5y) (3)(-m+n)(-m-n)(4)(y+3z) (y-3z) (4)(-4k+3)(-4k-3)2、利用平方差公式计算 4、利用平方差公式计算(1)(5+6x)(5-6x) (1)(a+2)(a-2)(2)(ab+8)(ab-8)

    2、(2)(3a+2b)(3a-2b)(3)(m+n)(m-n)+3n2 (3)(-x+1)(-x-1)5、利用平方差公式计算(1)803797 (2)3984026若x2y2=30,且xy=5,则x+y的值是( ) A5 B6 C6 D57(2x+y)(2xy)=_8(3x2+2y2)(_)=9x44y49(a+b1)(ab+1)=(_)2(_)210两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_11计算:(a+2)(a2+4)(a4+16)(a2)平方差公式练习题精选(含答案)一、基础训练1下列运算中,正确的是( ) A(a+3)(a-3)=a2

    3、-3 B(3b+2)(3b-2)=3b2-4 C(3m-2n)(-2n-3m)=4n2-9m2 D(x+2)(x-3)=x2-62在下列多项式的乘法中,可以用平方差公式计算的是( ) A(x+1)(1+x) B(a+b)(b-a) C(-a+b)(a-b) D(x2-y)(x+y2)3对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是( ) A3 B6 C10 D94若(x-5)2=x2+kx+25,则k=( ) A5 B-5 C10 D-1059.810.2=_; 6a2+b2=(a+b)2+_=(a-b)2+_7(x-y+z)(x+y+z)=_; 8(a

    4、+b+c)2=_9(x+3)2-(x-3)2=_10(1)(2a-3b)(2a+3b); (2)(-p2+q)(-p2-q);(3)(x-2y)2; (4)(-2x-y)211(1)(2a-b)(2a+b)(4a2+b2);(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z)12有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,验证了什么公式?二、能力训练13如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为( ) A4 B2 C-2 D214已知a+=3,则a2+,则a+的值是( )

    5、A1 B7 C9 D1115若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为( ) A10 B9 C2 D1165x-2y2y-5x的结果是( ) A25x2-4y2 B25x2-20xy+4y2 C25x2+20xy+4y2 D-25x2+20xy-4y217若a2+2a=1,则(a+1)2=_三、综合训练18(1)已知a+b=3,ab=2,求a2+b2;(2)若已知a+b=10,a2+b2=4,ab的值呢?19解不等式(3x-4)2(-4+3x)(3x+4)完全平方公式1利用完全平方公式计算:(1) (x+y)2(2)(-2m+5n)2(3) (2a+5b)2(4)(4p

    6、-2q)22利用完全平方公式计算:(1)(x-y2)2(2)(1.2m-3n)2(3)(-a+5b)2(4)(-x-y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2 (4)(a+b-c)2(5) (x-y+z)(x+y+z) (6)(mn-1)2(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。5已知x0且x+=5,求的值.二、完全平方式1、若是完全平方式,则k = 2、.若x27xy+M是一个完全平方式,那么M是 3、如果4a2Nab81b2是一个完全平方式,则N= 4、如果是一个完

    7、全平方式,那么= 三、公式的逆用1(2x_)2_4xyy2 2(3m2_)2_12m2n_3x2xy_(x_)2 449a2_81b2(_9b)25代数式xyx2y2等于( )2四、配方思想1、若a2+b22a+2b+2=0,则a2004+b2005=_.2、已知,求=_. 3、已知,求=_.4、已知x、y满足x2十y2十2x十y,求代数式=_.5已知,则= 6、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形?五、完全平方公式的变形技巧1、已知 求与的值。2、已知2ab5,ab,求4a2b21的值 3、已知,求, 4、,求(1)(2) 六、利用乘法公式

    8、进行计算(1)972; (2)20022; (3)99298100; (4)49512499 (5)七、“整体思想”在整式运算中的运用1、当代数式的值为7时,求代数式=_.已知,求:代数式的值。3、已知a=1999x+2000,b1999x+2001,c1999x+2002,则多项式a2+b2+c2一abbc-ac的值为( ) A0 B1 C2 D34、已知时,代数式,当时,代数式 的值5、若,试比较M与N的大小练习:1.若x,y互为不等于0的相反数,n为正整数,你认为正确的是A.xn、yn一定是互为相反数 B.()n、()n一定是互为相反数C.x2n、y2n一定是互为相反数 D.x2n1、y

    9、2n1一定相等2、已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 3、若x是不为0的有理数,已知,则M与N的大小是( )AMN B Mb),把余下的部分剪拼成一个矩形(如图),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A BC D 7(1)若x+y10,x3+y3=100,则x2+y2 (2)若a-b=3,则a3-b3-9ab 8.已知x25x+1=0,则x2+=_.平方差公式同步检测练习题1.(2004青海)下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)

    10、+x(2-x)=(x-2)(x-6)2.(2003泰州)下列运算正确的是( )A.x2+x2=2x4B.a2a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.(2003河南)下列计算正确的是( )A.(-4x)(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的计算结果是( )A.x4+16B.-x4-16C.x4-16D.16-x45.19922-19911993的计算结果是( )A.1B.-1C.2D

    11、.-26.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.( )(5a+1)=1-25a2,(2x-3) =4x2-9,(-2a2-5b)( )=4a4-25b28.99101=( )( )= .9.(x-y+z)(-x+y+z)=z+( ) =z2-( )2.10.多项式x2+kx+25是另一个多项式的平方,则k= .11.(a+b)2=(a-b)2+ ,a2+b2=(a+b)2+(a-b)2( ),a2+b2=(a+b)2+ ,a2+b2=(a-b)2+ .12.计算.(1)(a+b)2-(a-b)2; (2)(3x-4y)

    12、2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2; (4)1.23452+0.76552+2.4690.7655;(5)(x+2y)(x-y)-(x+y)2.13.已知m2+n2-6m+10n+34=0,求m+n的值14.已知a+=4,求a2+和a4+的值.15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)213(x-1)(x+1).17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.(2003郑州)如果(

    13、2a+2b+1)(2a+2b-1)=63,求a+b的值.19.已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值.不得用于商业用途仅供个人用于学习、研究;不得用于商业用途。For personal use only in study and research; not for commercial use.Nur fr den persnlichen fr Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l tude et la recherche uniquement des fins personnelles; pas des fins commerciales. , , . 以下无正文

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北师大版平方差公式练习题精选(完整版)(DOC 5页).doc
    链接地址:https://www.163wenku.com/p-5540135.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库