分式与分式方程导学案(新北师大)(DOC 35页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分式与分式方程导学案(新北师大)(DOC 35页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式与分式方程导学案新北师大DOC 35页 分式 方程 导学案 北师大 DOC 35
- 资源描述:
-
1、分式与分式方程导学案(新北师大)本资料为woRD文档,请点击下载地址下载全文下载地址第五章分式与分式方程第一节认识分式(一)【学习目标】、了解分式的概念,明确分式和整式的区别;2、能用分式表示简单问题数量之间的关系;3、会判断一个分式何时有意义;4、会根据已知条件求分式的值。【学习重难点】重点:掌握分式的概念;难点:正确区分整式与分式。【学习方法】自主探究与小组合作交流相结合【学习过程】模块一预习反馈一、学习准备、分式的概念:整式A除以整式B,可以表示成的形式,如果中含有字母,那么我们称为_2、分式与整式的区别:分式一定含有分母,且分母中一定含有;而整式不一定含有分母,若含有分母,分母中一定不
2、含有字母。3、分式有意义、无意义或等于零的条件:(1)分式有意义的条件:分式的的值不等于零;(2)分式无意义的条件:分式的的值等于零;(3)分式的值为零的条件:分式的的值等于零,且分式的的值不等于零;4、阅读教材:第一节认识分式二、教材精读5、理解分式的概念分析:区分整式与分式的唯一标准就是看分母,分母中不含字母的是整式,分母中含有字母的是分式。提示:是一个常数,而不是字母。解:注意:理解分式的概念,应把握以下三点:(1)分式中,A、B是两个整式,它是两个整式相除的商,分数线由括号和除号两个作用,如可以表达成;(2)分式中B一定含有字母,而分子A中可以含有字母,也可以不含字母;(3)分式中,分
3、母的值是零,则分式没有意义,如分式中,6、分析:根据分式有意义的条件进行计算,此题即为求分母不等于零时x的取值范围。模块二合作探究7、下列代数式:,其中是分式的有:_.8、当x取何值时,下列分式有意义?9、当x取何值时,下列分式无意义?0、当x取何值时,下列分式的值为零?模块三形成提升、下列各式中,哪些是整式?哪些是分式?5x7,3x21,答:_.(填序号)2、当x取何值时,分式无意义?3、当x为何值时,分式的值为正?4、若分式的值为零,则x的值是_。模块四小结评价本课知识点:、分式的概念:_2、分式有意义、无意义或等于零的条件:(1)分式有意义的条件:分式的的值不等于零;(2)分式无意义的条
4、件:分式的的值等于零;(3)分式的值为零的条件:分式的的值等于零,且分式的的值不等于零;二、本课典型例题:三、我的困惑:第五章分式与分式方程第一节分式(二)【学习目标】1、让学生初步掌握分式的基本性质;2、掌握分式约分方法,熟练进行约分;3、了解什么是最简分式,能将分式化为最简分式;【学习方法】自主探究与小组合作交流相结合【学习重难点】重点:掌握分式的概念及其基本性质;难点:正确区分整式与分式,以及运用分式的基本性质来化简分式。【学习过程】模块一预习反馈学习准备分式的基本性质:分式的和都同时乘以(或除以)同一个不等于零的整式,分式的值不变。用字母表示为:,(m是整式,且m0)。2约分:(1)概
5、念:把一个分式的分子和分母的公因式约去,这种变形称为_(2)约分的关键:找出分子分母的公因式;约分的依据:分式的基本性质;约分的方法:先把分子、分母分解因式(分子、分母为多项式时),然后约去它们的公因式,约分的最后结果是将一个分式变为最简分式或整式。3最简分式:分子与分母没有_的分式叫做最简分式。二、教材精读分析:解有关分式恒等变形的填空题,一般从分子或分母的已知项入手,观察变化方式,再把未知项作相应的变形。本题中是隐含条件。注意:(1)要深刻理解“都”与“同”的含义,“都”的意思是分子与分母必须同时乘(或除以)同一个整式,“同”说明分子与分母都乘(或除以)的整式必须是同一个整式。在分式的基本
6、性质中,要重视这个条件,如,隐含着这个条件,所以等式是正确的,但,分子、分母同乘y,由于没有说明这个条件,所以这个等式变形不正确。若原分式的分子或分母是多项式,运用分式的基本性质时,要先把分式的分子或分母用括号括上,再乘或除以整式m,如:。(4)分式的分子、分母或分式本身的符号,改变其中任意两个,分式的值不变,如:;若只改变其中一个的符号或三个符号,则分式的值变成原分式的值的相反数,如.模块二合作探究4、填空:=(3)=5、约分:(1)(2)(3)(4)6、代数式,中,是最简分式的是_.(填序号)模块三形成提升、填空:(1)(2)2、不改变分式的值,使下列分式的分子和分母都不含“-”号.(3)
7、解:3、判断下列约分是否正确:(1)=()(2)=()(3)=0()4、把分式中的都扩大为原来的3倍,则分式的值变为原来的倍。5、化简分式已知,求的值。模块四小结评价一、本课知识点:二、本课典型例题:第五章分式与分式方程第二节分式的乘除法【学习目标】、经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性;2、会进行简单分式的乘除法计算,具有一定的化归能力;3、在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单实际问题;【学习方法】自主探究与小组合作交流相结合【学习重难点】重点:掌握分式的乘除法法则;难点:熟练地运用法则进行计算,提高运算能力。【学习过程】模块一预习
8、反馈一、学习准备、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。2、分式乘除法运算步骤和运算顺序:(1)步骤:对分式进行乘除运算时,先观察各分式,看各分式的分子、分母能否分解因式,若能分解因式的应先分解因式。当分解因式完成以后,要进行_,直到分子、分母没有_时再进行乘除。(2)顺序:分式乘除法与整式乘除法运算顺序相同,一般从左向右,有除法的先把除法转化为乘法。二、教材精读3、分析:(1)题中分子、分母都是单项式,可直接运用法则计算;(2)应先分解因式,然后约分,但需注意符号的变化。模
9、块二合作探究4、计算:模块三形成提升、计算:(1)(2)(3)模块四小结评价一、本课知识点:、分式的乘除法法则(与分数的乘除法法则类似):两个分式相乘,把分子相乘的积作为积的,把分母相乘的积作为积的;两分式相除,把除式的分子和分母颠倒位置后再与被除式。二、本课典型例题:第五章分式与分式方程第三节分式加减法(一)【学习目标】、会进行简单分式的加减运算,具有一定的代数化归能力;2、能解决一些简单的实际问题,进一步体会分式的模型作用;3、结合已有数学经验,解决新问题,获得成就感以及克服困难的方法和勇气;【学习方法】自主探究与小组合作交流相结合【学习重难点】重点:分式的通分;难点:如何确定最简公分母。
10、【学习过程】模块一预习反馈学习准备、同分母分式相加减:(1)法则:同分母的分式相加减,不变,把相加减。(2)注意:字母表示为:。“分子相加减”是各个分式的“分子整体”相加减,即各个分子都应有括号。当分子为单项式时,括号可以省略;当分子为多项式时,括号不能省略。分式加减运算的结果,必须化为最简分式或整式。2、分式的通分:(1)概念:根据分式的基本性质,把异分母分式化成同分母分式的过程,叫分式的_。(2)通分的方法:先求各分式的_-,然后用每一个分式的分母去除这个最简公分母,用所得的商去乘相应分式的分子、分母;(3)通分的依据:_。二、教材精读3、进一步理解同分母的分式相加减的法则:分析:(1)同
11、分母分式相加减,分母不变,分子相加减,结果要化成最简分式或整式;(2)因为,把分式化成同分母后,依同分母分式加减法法则运算。通分:分析:通分的关键:确定几个分式的最简公分母。模块二合作探究5、分式,的最简公分母是6、计算:模块三形成提升、通分:(1)和(2)和(3)和2、计算:(1)(2)(3)模块四小结评价一、本课知识点:、同分母分式相加减:法则:同分母的分式相加减,不变,把相加减。2、分式通分的概念:根据分式的基本性质,把异分母分式化成同分母分式的过程,叫分式的_。二、本课典型例题:三、我的困惑:第五章分式与分式方程第三节分式加减法(二)【学习目标】、会进行异分母分式的通分;2、会进行异分
展开阅读全文