(完整版)新北师大版七年级数学下全册教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)新北师大版七年级数学下全册教案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 北师大 七年 级数 学下全册 教案 下载 _七年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、 20152016学年度第二学期教学进度任课教师: 学科:数学 年(班)级:周次日期教学容课时备注12.15-2.16同底数幂的乘法122.17-2.21幂的乘方与积的乘方同底数幂的除法532.24-2.28整式的乘法平方差公式543.33.7完全平方公式回顾与思考553.10-3.14两条直线的位置关系探索直线平行的条件563.17-3.21探索直线平行的条件平行线的性质573.243.28回顾与思考认识三角形583.31-4.4图形的全等探索三角形全等的条件4清明节94.7-4.11探索三角形全等的条件用尺规作三角形5104.14-4.18利用三角形全等测距离回顾与思考5114.214.2
2、5复习期中考试3124.28-5.2用表格表示的变量间关系用关系式表示的变量间关系4劳动节135.5-5.9用图象表示的变量间关系回顾与思考5145.12-5.16轴对称现象探索轴对称的性质5155.19-5.23简单的轴对称图形5165.26-5.30利用轴对称进行设计回顾与思考5176.2-6.6感受可能性概率的稳定性5186.9-6.13等可能事件发生的概率回顾与思考5196.166.20总复习5206.23-6.27期末考试5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩 教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上
3、,一份上交教务处。1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。情感、态度、价值观:提高学生学习数学的兴趣。教学重点和难点:幂的运算性质教学过程:一、实例导入:二、温故:2.,指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、知新:1利用乘方的意义,提问学生,引出法则计算103102解:103102=(101010)(1
4、010)(幂的意义)=1010101010(乘法的结合律)=1052引导学生建立幂的运算法则将上题中的底数改为a,则有a3a2(aaa)(aa)aaaaa=a5,即a3a2=a5=a3+2用字母m,n表示正整数,则有即aman=am+n3引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。注意:强调幂的底数必须相同,相乘时指数才能相加四、巩固:例1 计算:(1) (-3)7(-3)6; (2)(1/111
5、)3(1/111)(3) -x3x5(4) b2mb2m+1例2、光在真空中的速度约为3108米/秒,泰照射到地球上大约需要5102秒,地球距离太阳大约有多远?五、拓展:1、计算:(1)105106;(2)a7a3;(3)y3y2;(4)b5b; (5)a6a6;(6)x5x5 2、计算:(1)y12y6;(2)x10x;(3)x3x9;(4)10102104;(5)y4y3y2y;(6)x5x6x3六、课堂小结:1同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字2解题时要注意a的指数是13解题时,是什么运算就应用什么法则同底数幂相乘,就应用同底数幂的乘
6、法法则;整式加减就要合并同类项,不能混淆4-a2的底数a,不是-a计算-a2a2的结果是-(a2a2)=-a4,而不是(-a)2+2=a45若底数是多项式时,要把底数看成一个整体进行计算。七、板书设计:八、教学后记:1.2幂的乘方与积的乘方(1)教学目标:知识与技能:了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。过程与方法:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。情感、态度、价值观:提高学生学习数学的兴趣。教学重点:会进行幂的乘方的运算。教学难点:幂的乘方法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。活动准备:课件教学
7、过程:一、温故:计算(1)(x+y)2(x+y)3(2)x2x2x+x4x (3)(0.75a)3(a)4(4)x3xn-1xn-2x4通过练习的方式,先让学生复习乘方的知识,并紧接着利用乘方的知识探索新课的容。二、知新:1、64表示_个_相乘.(62)4表示_个_相乘.a3表示_个_相乘.(a2)3表示_个_相乘.在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数。并用乘方的概念解答问题。2、(62)4=_=_ (33)5=_=_(a2)3=_=_(am)2=_=_(am)n=_=_即 (am)n= _(其中m、n都是正整数)通过上面的探索活动,发现了什么?幂的乘方,底数_
8、,指数_.学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。三、巩固:1、计算下列各题:(1)(102)3 (2)(b5)5 (3)(an)3(4)-(x2)m (5)(y2)3y (6)2(a2)6(a3)4 学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义。2、 判断题,错误的予以改正。
9、(1)a5+a5=2a10 ( )(2)(s3)3=x6 ( )(3)(3)2(3)4=(3)6=36 ( )(4)x3+y3=(x+y)3 ( ) (5)(mn)34(mn)26=0 ( ) 学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用.四、拓展:1、 1、计算 5(P3)4(P2)3+2(P)24(P5)2(1)m2n+1m-1+02002(1)19902、 若(x2)n=x8,则m=_.3、 、若(x3)m2=x12,则m=_。4、 若xmx2m=2,求x9m的值。5、 若a2n=3,求(a3n)4的值。6、已知am=2,an=3,求a2m+3n的值.五、课堂小结:会进行幂
10、的乘方的运算。六、作业设计:课本P6习题1.2:1、2七、板书设计:八、教学后记:1.2幂的乘方与积的乘方(2)教学目标:知识与技能:了解积的乘方的运算性质,并能解决一些实际问题。过程与方法:经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。情感、态度、价值观:提高学生学习数学的兴趣。教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。教学方法:探索、猜想、实践法教学用具:课件教学过程:一、温故:1、计算下列各式:(1) (2) (3)(4)(5)(6)2、下列各式正确的是( )(A) (B) (C)(D)二、知新:1、 计算:2、 计算:
11、3、 计算:从上面的计算中,你发现了什么规律?_4、猜一猜填空:(1) (2)(3) 你能推出它的结果吗?结论:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。三、巩固:1、 计算下列各题:(1) (2)(3)(4)2、 计算下列各题:(1) (2) (3) (4) (5) (6)四、拓展:计算下列各题:(1) (2) (3)(4) (5) (6)五、课堂小结:本节课学习了积的乘方的性质及应用,要注意它与幂的乘方的区别。六、作业设计:第8页习题 1、2、3。七、板书设计:八、教学后记:1.3同底数幂的除法教学目标:知识与技能:了解同底数幂的除法的运算性质,并能解决一些实际问题。过程与方法:经
12、历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义。情感、态度、价值观:发展推理能力和有条理的表达能力。教学重点:会进行同底数幂的除法运算。教学难点:同底数幂的除法法则的总结及运用。教学方法:尝试练习法,讨论法,归纳法。教学过程:一、温故:1、填空:(1) (2)2 (3) 2、计算: (1) (2)二、知新:(1)(2)(3)(4)猜一猜:同底数幂相除,底数( ),指数( )负指数幂和零指数幂的意义,我们规定a0=1(a0) a-p=1/ap(a0,p是正整数)三、巩固:1、计算:(1) (2)(3) (4)2、用小数或分数表示下列各数:(1) (2) (3) (4)4.2 (6)四、
13、拓展:1、已知2、若3、(1)若 (2)若(3)若0.00000033,则 (4)若五、课堂小结:会进行同底数幂的除法运算。六、作业设计:七、板书设计:八、教学后记:1.4 整式的乘法(1)教学目标:知识与技能:使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;过程与方法:注意培养学生归纳、概括能力,以及运算能力情感、态度、价值观:提高学生学习数学的兴趣。教学重点和难点:准确、迅速地进行单项式的乘法运算教学过程:一、温故:1下列代数式中,哪些是单项式?哪些不是?2下列单项式的系数和次数分别是多少?3利用乘法的交换律、结合律计算6413254前面学习了哪三种幂的乘法运算法则?容是
14、什么?二、知新:1探索法则利用乘法交换律、结合律以及前面所学的幂的乘法运算的性质,计算下列单项式乘以单项式:(1) 2x2y3xy2 (2) 4a2x5(-3a3bx)2、归纳法则单项式与单项式相乘,把它的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式3剖析法则(1)法则实际分为三点:系数相乘有理数的乘法;相同字母相乘同底数幂的乘法;只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式(2)不论几个单项式相乘,都可以用这个法则(3)单项式相乘的结果仍是单项式三、巩固:例1 计算:(1)2xy21/3xy;(2)-2a2b3(-3a);(3)7xy2z(
15、2xyz)2四、拓展:1计算:(1)3x55x3;(2)4y(-2xy3);(3)(3x2y)3(-4xy2);(4)(-xy2z3)4(-x2y)32 光的速度每秒约为3105千米,太射到地球上需要的时间约是5102秒,地球与太阳的距离约是多少千米?五、课堂小结:1单项式的乘法法则可分为三点,在解题中要灵活应用2在运算中要注意运算顺序六、板书设计:七、教学后记:1.6整式的乘法(2)教学目标:知识与技能:会进行简单的整式的乘法运算。过程与方法:经历探索整式的乘法运算法则的过程。情感、态度、价值观:理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。教学重
16、点:整式的乘法运算。教学难点:推测整式乘法的运算法则。教学方法:尝试练习法,讨论法,归纳法。教学过程:一、温故: 计算:(1) (1) (2) (3) 2(ab3)(4)3(ab2c+2bcc) (5)(2a3b)(6ab6c) (6) (2xy2)3yx二、知新: 课件展示图画,让学生观察图画用不同的形式表示图画的面积.并做比较.由此得到单项式与多项式的乘法法则。第一表示法:x2第二表示法:x(x)故有:x(x)= x2观察式子左右两边的特点,找出单项式与多项式的乘法法则。用乘法分配律来验证。单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再,再把所得的积相加。三、巩固: 例2:
17、计算(1)2ab(5ab2+3a2b) (2)((3)5m2n(2n+3m- n2)(4)2(x+ y2z+x y2z3)xyz练习:1、判断题:(1) 3a35a3=15a3 ( ) (2) ( )(3) ( ) (4) x2(2y2xy)=2xy2x3y ( )2、计算题:(1) (2) (3) (4) 3x(yxyz)四、拓展: 1、有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?五、课堂小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。六、作业设计:七、板书设计 八、教学后记:1.4 整式的乘法(3)教学目标:知识与技能:理解多项式乘法的法则,并会
18、进行多项式乘法的运算。 过程与方法:经历探索多项式乘法的法则的过程,理解多项式乘法的法则。 情感、态度、价值观:进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。教学重点:多项式乘法的运算。教学难点:探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、与“符号”的问题教学方法:探索法、讨论法,归纳法。教学过程:一、温故:1、计算:(1)(2) (3) (4)2、计算:(1) (2)二、知新: 如图,计算此长方形的面积有几种方法?如何计算? 小组讨论 你从计算中发现了什么?多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。三、巩固:例3
19、计算:(1)(1-x)(0.6-x)(2)(2x+y)(x-y)四、拓展:1、若 则m=_ , n=_2、若 ,则k的值为( ) (A) a+b (B) ab (C)ab (D)ba3、已知 则a=_ b=_4、若成立,则X为 5、计算: +26、某零件如图示,求图中阴影部分的面积S五、课堂小结:六、作业设计:七、板书设计:八、教学后记:1.5平方差公式(1)教学目标:知识与技能:会推导平方差公式,并能运用公式进行简单的计算。过程与方法:经历探索平方差公式的过程,进一步发展学生的符号感和推理能力。情感、态度、价值观:了解平方差公式的几何背景。教学重点:1、弄清平方差公式的来源及其结构特点,能用
展开阅读全文