北师大版九年级上册数学[《特殊平行四边形》全章复习与巩固(基础)知识点整理及重点题型梳理](DOC 9页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版九年级上册数学[《特殊平行四边形》全章复习与巩固(基础)知识点整理及重点题型梳理](DOC 9页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 【特殊平行四边形 北师大版九年级上册数学特殊平行四边形全章复习与巩固基础知识点整理及重点题型梳理DOC 9页 北师大 九年级 上册 数学 特殊 平行四边形 复习 巩固 基础 知识点 整理 下载 _九年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、精品文档 用心整理新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习特殊平行四边形全章复习与巩固(基础)知识讲解 【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算.【知识网络】【要点梳理】要点一、平行四边形1定义:两组对边分别平行的四边形叫做平行四边形.2性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形.3面积:4判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分
2、别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2性质:(1)具有平行四边形的一切性质; (2)四条边相等; (3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角; (4)中心对称图形,轴对称图形.3面积
3、:4判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点三、矩形1定义:有一个角是直角的平行四边形叫做矩形.2性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等; (4)中心对称图形,轴对称图形.3面积:判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半要点四、正方形1. 定义:四条边都
4、相等,四个角都是直角的四边形叫做正方形.2性质:(1)对边平行; (2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3面积:边长边长对角线对角线4判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,在ABC中,ACB=90,BA,点D为边A
5、B的中点,DEBC交AC于点E,CFAB交DE的延长线于点F(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:B=A+DGC【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得ADG=G,再证明B=DCB,A=DCA,然后再推出1=DCB=B,再由A+ADG=1可得A+G=B【答案与解析】证明:(1)DEBC,CFAB,四边形DBCF为平行四边形,DF=BC,D为边AB的中点,DEBC,DE=BC,EF=DF-DE=BC-CB=CB,DE=
6、EF;(2)DBCF,ADG=G,ACB=90,D为边AB的中点,CD=DB=AD,B=DCB,A=DCA,DGDC,DCA+1=90,DCB+DCA=90,1=DCB=B,A+ADG=1,A+G=B【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出ADG=G,1=B掌握在直角三角形中,斜边上的中线等于斜边的一半类型二、菱形2、(2016广安)如图,四边形ABCD是菱形,CEAB交AB的延长线于点E,CFAD交AD的延长线于点F,求证:DF=BE【思路点拨】连接AC,根据菱形的性质可得AC平分DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证
7、明RtCDFRtCBE,即可得出DF=BE【答案与解析】证明:连接AC,四边形ABCD是菱形,AC平分DAE,CD=BC,CEAB,CFAD,CE=FC,CFD=CEB=90在RtCDF与RtCBE中,RtCDFRtCBE(HL),DF=BE【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等同时考查了全等三角形的判定与性质 举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由 【答案】四边形ABCD是菱
展开阅读全文
链接地址:https://www.163wenku.com/p-5537564.html