北师大版八年级下册数学[《平行四边形及其性质》知识点整理及重点题型梳理](基础)(DOC 8页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版八年级下册数学[《平行四边形及其性质》知识点整理及重点题型梳理](基础)(DOC 8页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 【平行四边形及其性质 北师大版八年级下册数学平行四边形及其性质知识点整理及重点题型梳理基础DOC 8页 北师大 年级 下册 数学 平行四边形 及其 性质 知识点 整理 重点 题型 梳理 下载 _八年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、精品文档 用心整理北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习平行四边形及其性质(基础) 【学习目标】1理解平行四边形的概念,掌握平行四边形的性质定理.2能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题3. 了解平行四边形的不稳定性及其实际应用4. 掌握两个推论:“夹在两条平行线间的平行线段相等”。“夹在两条平行线间的垂线段相等” 【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”. 要点诠释:平行四边形的基本元素:边、角、对角线.相
2、邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质定理 平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:(1)平行四边形的性质定理中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的距离:(1)定义:两条
3、平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.2平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为DAB、CBA的平分线求证:DFEC【答案与解析】证明: 在ABCD中,CDAB, DFAFAB 又 AF是DAB的平分线, DAFFAB, DAFDFA, ADDF 同理可得ECBC 在ABCD中,ADBC, DFEC【总结升华】利用平行四边形的性质可以得到对角相等,对边平行且相
4、等,为证明线段相等提供了条件举一反三:【变式】如图,E、F是平行四边形ABCD的对角线AC上的点,CEAF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明. 【答案】证明:猜想:BE DF且BEDF.四边形ABCD是平行四边形 CB=AD,CBAD BCEDAF 在BCE和DAF中 BCEDAF BEDF,BECDFA BEDF即 BE DF且BEDF.2.(2016永州)如图,在ABCD中,BAD的角平分线AE交CD于点F,交BC的延长线于点E(1)求证:BE=CD;(2)连接BF,若BFAE,BEA=60,AB=4,求平行四边形ABCD的面积【思路点拨】(1)由平行四边形的
5、性质和角平分线得出BAE=BEA,即可证明;(2)证明ABE为等边三角形,由勾股定理求出BF,由AAS证明ADFECF,得出ADF与ECF的面积相等,平行四边形ABCD的面积=ABE的面积,即可得出结果【答案与解析】(1)证明:在平行四边形ABCD中,ADBC,ABCD,AB=CD,AEB=DAE,又AE是BAD的角平分线,BAE=DAE,AEB=BAE,AB=BE,BE=CD(2)解:AB=BE,BEA=60ABE为等边三角形,AE=AB=4,BFAE,AF=EF=2,BF=,ADBC,D=ECF,DAF=E,在ADF和ECF中, ,ADFECF(AAS)ADF的面积=ECF的面积,平行四边
展开阅读全文
链接地址:https://www.163wenku.com/p-5536379.html