北师大版八年级下册数学复习知识点及例题相结合(DOC 21页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版八年级下册数学复习知识点及例题相结合(DOC 21页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大版八年级下册数学复习知识点及例题相结合DOC 21页 北师大 年级 下册 数学 复习 知识点 例题 相结合 DOC 21 下载 _八年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“”(或“”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 大于等于0(0) 0和正数 不小于0非正数 小于等于0(0) 0和负数 不大于0二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果ab,那么a+cb+c, a-cb-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果ab,并且c0
2、,那么acbc, .(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果ab,并且c0,那么acb,那么a-b是正数;反过来,如果a-b是正数,那么ab;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果ab,那么a-b是负数;反过来,如果a-b是正数,那么ab a-b0 a=b a-b=0 ab a-bb(或ax0时,解为;当a=0时,且b0,则x取一切实数;当a=0时,且b0,则无解;当a0时, 解为;5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:审: 认真审题,找出题中的不等关系,要抓住题中
3、的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;设: 设出适当的未知数;列: 根据题中的不等关系,列出不等式;解: 解出所列的不等式的解集;答: 写出答案,并检验答案是否符合题意.例 不等式mxn(m0)的解集是( )Axn/m B. 当m0时,xn/m,当m0时,x-n/mCxn/m D当m0时,xn/m,当m0时,xn/m例 如果不等式(a+1) x(a+1)的解集为x1,则a必须满足的的条件是:A. a0 B. a-1 C. a-1 D. a-1例 已知关于x的不等式(2ab)x+a5b 0的解集为x10/7,则ax+b0的解集为 x2ax2-bxaxb 例 若不等式组
4、无解,则不等式组 的解集是 例 水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?例 某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:原料维生素C及价格甲种原料乙种原料维生素C/(单位/千克)600100原料价格/(元/千克)84 现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,(1)设需用千克甲种原料,写出应满足的不等式组。(2)按上述的条件购买甲种原料应在什么范围之
5、内?五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且ab两大取较大xa两小取小axb大小交叉中间找无解在大小分离没有解(是空集)x2m+1xm+2例 如果不等式组 的解集是x-
6、1,那么m的值为( ) A -3 B 3 C 1 D 3或-12x3(x-3) +1(3x+2)/4x+a例 关于x的不等式组 有四个整数解,则a的取值范围是( )A. -11/4a -5/2 B .-11/4a-5/2 C. 11/4a-5/2 D.-11/4a-5/2第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.例 下列各式中从左到右的变形,是因式分解的是( )(A)(a
7、+3)(a-3)=a2-9 (B)x2+x-5=(x-2)(x+3)+1 (C)a2b+ab2=ab(a+b) (D)x2+1=x(x+)二. 提公因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: 2. 概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: 3. 易错点:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不能漏掉.例
8、下列各式的因式分解中正确的是( )(A)-a2+ab-ac= -a(a+b-c) (B)9xyz-6x2y2=3xyz(3-2xy) (C)3a2x-6bx+3x=3x(a2-2b) (D)xy2+x2y=xy(x+y)分解因式 (1)a2(x-2a)2-a(2a-x)3 (2)-3ma3+6ma2-12ma三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: (2)完全平方公式: 3. 因式分解要分解到底. 如就没有分解到底.4. 运用公式法:(1)平方差公式: 应是二项式或视作二项式的多项式;二项式
9、的每项(不含符号)都是一个单项式(或多项式)的平方;二项是异号.(2)完全平方公式:应是三项式;其中两项同号,且各为一整式的平方; 还有一项可正负,且它是前两项幂的底数乘积的2倍.5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 例 下列多项式中不能用平方差公式分解的是( )(A)-a2+b2 (B)-x2-y2 (C)49x2y
10、2-z2 (D)16m4-25n2p2例 下列多项式中,不能用完全平方公式分解因式的是( )(A) (B) (C) (D)例 将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 .例 已知(4x+y-1)2+=0,求4x2y-4x2y2+xy2的值.例 计算的值是 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: 2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.3. 注意: 分组时要注意符号的变化.第三章 分式一. 分式1. 两个整数不能整除时,出现了分数
11、;类似地,当两个整式不能整除时,就出现了分式. 整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.2. 整式和分式统称为有理式,即有: 3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 4. 一个分式的分子分母有公因式时,可以运用分式的基本性质,把这个分式的分子分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.例 下列代数式:;,其中整式有_,分式有_(只填序号).例 分式当x _时分式的值为零,当x _时分式有意义.
12、例 如果,则=_.二. 分式的乘除1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即: , 2. 分式乘方,把分子、分母分别乘方. 即: 逆向运用,当n为整数时,仍然有成立.3. 分子与分母没有公因式的分式,叫做最简分式.例 计算(1) (2) 三. 分式的加减法1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2. 分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.(1)同分母的分式相加减,分母不变,把
13、分子相加减; 上述法则用式子表示是:(2)异分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3. 概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 例 计算(1) (2) 四. 分式方程1. 解分式方程的一般步骤:在方程的两边都乘最简公分母,约去分母,化成整式方程;解这个整式方程;把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.2. 列分式方程解应用题的一般步骤:审清题意;设未知数;
14、根据题意找相等关系,列出(分式)方程;解方程,并验根;写出答案.例 解方程+1例 某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率比乙厂高5%,求甲厂的合格率?第四章 相似图形一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成.2. 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.3. 注意: a:b=k,说明a是b的k倍;由于线段a、b的长度都是正数,所以k是正数;比与所选线
展开阅读全文