人教版七年级数学下册知识点及各章节典型试题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版七年级数学下册知识点及各章节典型试题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 知识点 各章 典型 试题 下载 _考试试卷_数学_初中
- 资源描述:
-
1、最新版人教版七年级数学下册知识点及练习第五章相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 ,垂直是相交的一种特殊情况。图1 1 3 4 2 2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。 3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角, 与 互为邻补角。 + = 180; + = 180; + = 180; + = 180。4、两条直线相交所
2、构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ; = 。5、两条直线相交所成的角中,如果有一个是 直角或90时,称这两条直线互相垂直,图2 1 3 4 2 a b 其中一条叫做另一条的垂线。如图2所示,当 = 90时, 。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质3:如图2所示,当 a b 时, = = = = 90。点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。图3 a 5 7 8
3、6 1 3 4 2 b c 6、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角; 与 是同位角; 与 是同位角; 与 是同位角。在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。7、平行公理:经过直线外一点有且只有一条直线
4、与已知直线平行。图4 a 5 7 8 6 1 3 4 2 b c 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。如图4所示,如果ab,则 = ; = ; = ; = 。性质2:两直线平行,内错角相等。如图4所示,如果ab,则 = ; = 。性质3:两直线平行,同旁内角互补。如图4所示,如果ab,则 + = 180; + = 180。图5 a 5 7 8 6 1 3 4 2 b c 性质4:平行于同一条直线的两条直线互相平行。如果ab,ac,则。8、平行线的判定: 判定1:同位角相等,两直线平行。如图5所示,如果 = 或
5、= 或 = 或 = ,则ab。判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则ab 。判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180; + = 180,则ab。判定4:平行于同一条直线的两条直线互相平行。如果ab,ac,则。9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。10、平移:在平面内,将一个图形沿某个方向移动
6、一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质:平移前后两个图形中对应点的连线平行且相等;对应线段相等对应角相等二、练习:1、如图1,直线a,b相交于点O,若1等于40,则2等于( )A50 B60 C140 D1602、如图2,已知ABCD,A70,则1的度数是( )A70 B100 C110 D1303、已知:如图3,垂足为,为过点的一条直线,则 与的关系一定成立的是( )DBAC1ab12OABCDEF21OA相等 B互余C互补 D互为对
7、顶角 图1 图2 图34、如图4,则( )A B CDBEDACF 图4 图5 图65、如图5,小明从A处出发沿北偏东60方向行走至B处,又沿北偏西方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )A右转80 B左转80 C右转100 D左转1006、如图6,如果ABCD,那么下面说法错误的是( ) A3=7; B2=6 C、3+4+5+6=1800 D、4=87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角是( ) A ;B 都是;C 或;D 以上都不对8、下列语句:三条直线只有两个交点,则其中两条直线互相平行;如果两条平行线被第三条截,同旁内角
8、相等,那么这两条平行线都与第三条直线垂直;过一点有且只有一条直线与已知直线平行,其中( ) A、是正确的命题;B、是正确命题;C、是正确命题 ;D以上结论皆错9、下列语句错误的是( ) A连接两点的线段的长度叫做两点间的距离;B两条直线平行,同旁内角互补C若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻abMPN123补角 D平移变换中,各组对应点连成两线段平行且相等 10、 如图7,分别在上,为两平行线间一点,那么( )ABCD 11、如图8,直线,直线与相交若,则图11ABCab12312bacbacd1234ABCDE 图8 图9 图1012CBABDE12、如图9,已知则_
9、13、如图10,已知ABCD,BE平分ABC,CDE150,则C_14、如图11,已知,则 15、如图12所示,请写出能判定CEAB的一个条件 16、如图13,已知,=_17、推理填空:(每空1分,共12分)如图: 若1=2,则 ( )若DAB+ABC=1800,则 ( )当 时, C+ABC=1800 ( )当 时,3=C( )18、如图,130,ABCD,垂足为O,EF经过点O.求2、3的度数. 19、 已知:如图ABCD,EF交AB于G,交CD于F,FH平分EFD,交AB于H ,AGE=500,求:BHF的度数20、观察如图所示中的各图,寻找对顶角(不含平角):图a图b图c(1)如图a,
10、图中共有对对顶角;(2)如图b,图中共有对对顶角;(3)如图c,图中共有对对顶角.(4)研究(1)(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角第六章实数【知识点一】实数的分类1、按定义分类:2.按性质符号分类: 注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b
11、=0.2.绝对值 |a|03.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数a、b互为倒数 .平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“”。2. 如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数)。3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平方根与平方根同为0。5. 如果x3=a,则
12、x叫做a的立方根,记作“”(a称为被开方数)。6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)倍,算术平方根扩大(或缩小)倍,例如.10.平方表:(自行完成)12=62=112=162=212=22=72=122=172=222=32=82=132=182=232=42=92=142=192=242=52=102
13、=152=202=252=题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和1。2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。3、本身为非负数,有非负性,即0;有意义的条件是a0。4、公式:()2=a(a0);=(a取任何数)。5、区分()2=a(a0),与 =6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。【知识点三】实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可【知识点四】实数
14、大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数2.减法:减去一个数等于加上这个数的相反数3.乘法 几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数为0,积就为04.除法 除以一
15、个数,等于乘上这个数的倒数两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得05.乘方与开方 (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方【典型例题】1.下列语句中,正确的是( )A一个实数的平方根有两个,它们互为相反数 B负数没有立方根 C一个实数的立方根不是正数就是负数 D立方根是这个数本身的数共有三个 2. 下列说法正确的是()A-2是(-2)2的算术平方根B3是-9的算术平方根C16的平方根是4 D 27的立方根是3 3. 已知实数x,y满足
16、 +(y+1)2=0,则x-y等于 4.求下列各式的值(1);(2);(3);(4)5. 已知实数x,y满足 +(y+1)2=0,则x-y等于 6. 计算(1)64的立方根是(2)下列说法中:都是27的立方根,的立方根是2,。其中正确的有 ( )A、1个 B、2个 C、3个 D、4个7.易混淆的三个数(1)(2)(3)综合演练一、填空题1、(-0.7)2的平方根是 2、若=25,=3,则a+b= 3、已知一个正数的两个平方根分别是2a2和a4,则a的值是 4、 _5、若m、n互为相反数,则_6、若 ,则a_07、若有意义,则x的取值范围是 8、16的平方根是4”用数学式子表示为 9、大于-,小
17、于的整数有_个。10、一个正数x的两个平方根分别是a+2和a-4,则a=_ _,x=_ _。11、当时,有意义。12、当时,有意义。15、若有意义,则能取的最小整数为 二、选择题1 9的算术平方根是( )A-3 B3 C3 D812下列计算正确的是( )A=2 B=9 C. D.3下列说法中正确的是( ) A9的平方根是3 B的算术平方根是2 C.的算术平方根是4 D. 的平方根是24 64的平方根是( )A8 B4 C2 D5 4的平方的倒数的算术平方根是( )A4 B C- D6下列结论正确的是( ) A B C D7以下语句及写成式子正确的是( )A、7是49的算术平方根,即 B、7是的
展开阅读全文