书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型二次函数图象和性质知识点总结.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5520564
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:13
  • 大小:449.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《二次函数图象和性质知识点总结.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次 函数 图象 性质 知识点 总结
    资源描述:

    1、二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:一般式:(a、b、c为常数,a0)顶点式:(a、h、k为常数,a0),其中(h,k)为顶点坐标。交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a0,(也叫两根式)。 2. 二次函数的图象二次函数的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:左加右减,上加下减,具体平移方法如下表所示。在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)

    2、平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。3. 二次函数的性质函数二次函数a、b、c为常数,a0(a、h、k为常数,a0)a0a0a0a0图象(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并

    3、向下无限延伸性(2)对称轴是x,顶点是()(2)对称轴是x,顶点是()(2)对称轴是xh,顶点是(h,k)(2)对称轴是xh,顶点是(h,k)质(3)当时,y随x的增大而减小;当时,y随x的增大而增大(3)当时,y随x的增大而增大;当时,y随x的增大而减小(3)当时,y随x的增大而减小;当xh时,y随x的增大而增大。(3)当xh时,y随x的增大而增大;当xh时,y随x的增大而减小(4)抛物线有最低点,当时,y有最小值,(4)抛物线有最高点,当时,y有最大值,(4)抛物线有最低点,当xh时,y有最小值(4)抛物线有最高点,当xh时,y有最大值 4. 求抛物线的顶点、对称轴和最值的方法配方法:将解

    4、析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a0,y有最小值,当xh时,;若a0,y有最大值,当xh时,。公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若,y有最大值,当 5. 抛物线与x轴交点情况:对于抛物线当时,抛物线与x轴有两个交点,反之也成立。当时,抛物线与x轴有一个交点,反之也成立,此交点即为顶点。当时,抛物线与x轴无交点,反之也成立。二、考点归纳考点一求二次函数的解析式例1.已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试求f(x)。解答:法一:利用二次函数的一般式方程设f(x)ax2bxc(a0),由题意故得f(x)4x24x7。

    5、法二:利用二次函数的顶点式方程设f(x)a(xm)2n由f(2)f(1)可知其对称轴方程为,故m;又由f(x)的最大值是8可知,a25解答:函数f(x)4x2mx5在区间2,)上是增函数,则区间2,)必在对称轴的右侧,从而,故f(1)9m25。选A。说明:解决此类问题结合函数图像显得直观。考点四二次函数的性质的应用例4.设的定义域是n,n1(n是自然数),试判断的值域中共有多少个整数?分析:可以先求出值域,再研究其中可能有多少个整数。解答:的对称轴为,因为n是自然数,故,所以函数在n,n1上是增函数。故故知:值域中共有2n2个整数。说明:本题利用了函数的单调性,很快求出了函数的值域,这是求函数

    6、值域的一个重要方法。考点五二次函数的最值例5.试求函数在区间1,3上的最值。分析:本题需就对称轴与区间的相对位置关系进行分类讨论:3。解答:函数的对称轴I、当3即时:函数在1,3上为减函数,故综上所述:当时,;当时,;当时,;当时,。考点六方程的根或函数零点的分布问题例6.已知二次方程的一个根比1大,另一个根比1小,试求的取值范围。解答:设,则;例7.当为何实数时,关于的方程(I)有两个正实根;(II)有一个正实根,一个负实根。解答:(I)设,由方程有两个正实根,结合图像可知:(II)设,结合图像可知:说明:一元二次方程的根或二次函数零点的分布问题的处理主要思路是结合函数图像,考虑三个内容:根

    7、或零点所在区间端点的函数的正负、判别式及对称轴的位置。考点七三个“二次”的关系例8.已知关于的一元二次不等式的解集为,试解关于的一元二次不等式。解答:法一:由题意可知,一元二次不等式对应的一元二次方程的两个根是1和2,故;又即关于的一元二次不等式的解集为。法二:,即关于的一元二次不等式的解集为。考点八二次函数的应用例9.(2003北京春招)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元。未租出的车每辆每月需维护费50元。(I)当每辆车的月租金定为3600元时,能租出多少辆车?(II

    8、)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解答:(I)当每辆车的月租金定为3600元时,未租出的车辆数为,故租出了88辆;(II)设每辆车月租金定为元,则租赁公司的月收益为故当月租金定为4050元时,租赁公司的月收益最大为307050元。三、综合练习1、小李从如图所示的二次函数的图象中,观察得出了下面四条信息:(1)b24ac0;(2)c1;(3)ab0;(4)abc0. 你认为其中错误的有( )yxO(第4题)A. 2个B. 3个 C. 4个 D. 1个 第1题2.已知二次函数经过点M(-1,2)和点N(1,-2),交x轴于A,B两点,交y轴于C则(); 该二次

    9、函数图像与y轴交与负半轴 存在这样一个a,使得M、A、C三点在同一条直线上若以上说法正确的有:A B C D3、在平面直角坐标系中,如果抛物线y2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( ) Ay2(x + 2)22 By2(x2)2 + 2 Cy2(x2)22 Dy2(x + 2)2 + 24.如图,点A,B的坐标分别为(1,4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为( ) A3 B1 C5 D8 5. 抛物线图像如图所示,则一次函数与反比例函数 在同一坐

    10、标系内的图像大致为 ( )xxxxx第7题图6. 把抛物线向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是.7.如图,菱形ABCD的三个顶点在二次函数y=ax22ax+(a0)的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为第10题8. 老师给出一个y关于x的函数,甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:当x2时,y随x的增大而减小;丁:当x0.已知这四位同学叙述都正确。请写出满足上述所有性质的一个函数_.9.已知关于x的函数y(m1)x22xm图像与坐标轴有且只有2个交点,则m10. 如图

    11、,已知P的半径为2,圆心P在抛物线上运动,当P与轴相切时,圆心P的坐标为. OxAyHCy=x211. 如图,在第一象限内作射线OC,与x轴的夹角为30o,在射线OC上取一点A,过点A作AHx轴于点H.在抛物线y=x2 (x0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与AOH全等,则符合条件的点A的坐标是 _ .12. 我们知道,根据二次函数的平移规律,可以由简单的函数通过平移后得到较复杂的函数,事实上,对于其他函数也是如此。如一次函数,反比例函数等。请问可以由通过_平移得到。13如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,交双曲线(x0)于点N;作PMAN交

    12、双曲线(x0)于点M,连结AM.已知PN=4.(1)求k的值.(3分)(2)求APM的面积.(3分)14如图,已知,是一次函数的图象和反比例函数的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及的面积;(3)求方程的解(请直接写出答案);(4)求不等式的解集(请直接写出答案). 15. 如图,在直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在x轴、y轴的正半轴上。抛物线经过点B、C。(1)求抛物线的解析式;(2)点D、E分别是AB、BC上的动点,且点D从点A开始,以1cm/s的速度沿AB向点B移动,同时点E从点B开始,以1cm/s的速度沿BC向

    13、点C移动。运动t 秒(t2)后,能否在抛物线上找到一点P,使得四边形BEDP为平行四边形。如果能,请求出t 值和点P的坐标;如果不能,请说明理由。16 已知二次函数,它的图象与x轴只有一个交点,交点为A,与y轴交于点B,且AB=2 . (1)求二次函数解析式; (2)当b0时,过A的直线y=xm与二次函数的图象交于点C,在线段BC上依次取D、E两点,若,试确定DAE的度数,并简述求解过程。17. 如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为坐标原点. A、B两点的横坐标分别是方程的两根,且cosDAB.(1)求抛物线的函数解析式;(2)作ACAD,AC

    14、交抛物线于点C,求点C的坐标及直线AC的函数解析式;(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使APC的面积最大?如果存在,请求出点P的坐标和APC的最大面积;如果不存在,请说明理由.18. 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a0)经过、两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;(3)在(2)的条件下,当s

    15、取得最大值时,过点P作x的垂线,垂足为F,连接EF,把PEF沿直线EF折叠,点P的对应点为P,请直接写出P点坐标,并判断点P是否在该抛物线上12331DyCBAP2ExO19. 已知:抛物线经过点,且对称轴与轴交于点.(1)求抛物线的表达式;(2)如图,点、分别是轴、对称轴上的点,且四边形是矩形,点是上一点,将沿着直线翻折,点与线段上的点重合,求点的坐标;(3)在(2)的条件下,点是对称轴上的点,直线交于点,求点坐标.(第3题图)20. 如图,抛物线,与轴交于点,且(I)求抛物线的解析式;(II)探究坐标轴上是否存在点,使得以点为顶点的三角形为直角三角形?若存在,求出点坐标,若不存在,请说明理由; (III)直线交轴于点,为抛物线顶点若,的值21如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.求二次函数的解析式;在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;在抛物线上是否存在点Q,使QAB与ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:二次函数图象和性质知识点总结.doc
    链接地址:https://www.163wenku.com/p-5520564.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库