九年级数学锐角三角函数知识点与典型例题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《九年级数学锐角三角函数知识点与典型例题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 锐角三角 函数 知识点 典型 例题 下载 _其它资料_数学_初中
- 资源描述:
-
1、锐角三角函数:知识点一:锐角三角函数的定义:一、 锐角三角函数定义:在RtABC中,C=900, A、B、C的对边分别为a、b、c,则A的正弦可表示为:sinA=,A的余弦可表示为cosA=A的正切:tanA= ,它们弦称为A的锐角三角函数2、取值范围sinA cosA】例1如图所示,在RtABC中,C90第1题图_,_;_,_;_,_例2. 锐角三角函数求值:在RtABC中,C90,若a9,b12,则c_,sinA_,cosA_,tanA_,sinB_,cosB_,tanB_例3已知:如图,RtTNM中,TMN90,MRTN于R点,TN4,MN3求:sinTMR、cosTMR、tanTMR典
2、型例题:类型一:直角三角形求值1已知RtABC中,求AC、AB和cosB2如图,O的半径OA16cm,OCAB于C点,求AB及OC的长3已知:O中,OCAB于C点,AB16cm,(1)求O的半径OA的长及弦心距OC;(2)求cosAOC及tanAOC4. 已知是锐角,求,的值对应训练:1在RtABC中,C90,若BC1,AB=,则tanA的值为AB C D2 2在ABC中,C=90,sinA=,那么tanA的值等于( ).AB.C.D. 类型二. 利用角度转化求值:1已知:如图,RtABC中,C90D是AC边上一点,DEAB于E点DEAE12求:sinB、cosB、tanB2 如图,直径为10
3、的A经过点和点,与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cosOBC的值为( )A B C D3.如图,角的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(3,4),则4.如图,菱形ABCD的边长为10cm,DEAB,则这个菱形的面积=cm25.如图,是的外接圆,是的直径,若的半径为,则的值是()AB C D6. 如图6,沿折叠矩形纸片,使点落在边的点处已知,AB=8,则的值为 ( ) 7. 如图7,在等腰直角三角形中,为上一点,若 ,则的长为( )A B C D8. 如图8,在RtABC中,C=90,AC=8,A的平分线AD=求B的度数及边BC、AB的长.类型三. 化斜三
4、角形为直角三角形例1如图,在ABC中,A=30,B=45,AC=2,求AB的长例2已知:如图,在ABC中,BAC120,AB10,AC5求:sinABC的值对应训练1如图,在RtABC中,BAC=90,点D在BC边上,且ABD是等边三角形若AB=2,求ABC的周长(结果保留根号)2已知:如图,ABC中,AB9,BC6,ABC的面积等于9,求sinB3. ABC中,A=60,AB=6 cm,AC=4 cm,则ABC的面积是A.2 cm2 .4 cm2C.6 cm2 D.12 cm2类型四:利用网格构造直角三角形例1 如图所示,ABC的顶点是正方形网格的格点,则sinA的值为()A B C D对应
5、练习:1如图,ABC的顶点都在方格纸的格点上,则sin A =_.2如图,A、B、C三点在正方形网络线的交点处,若将绕着点A逆时针旋转得到,则的值为A. B. C. D.3正方形网格中,如图放置,则tan的值是() A B. C. D. 2特殊角的三角函数值锐角a304560sinacosatana当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1求下列各式的值1).计算:2)计算:.3)计算:31+(21)0tan30tan454计算:5计算:;例2求适合下列条件的锐角a (1)(2)(3)(4)(5)已知a 为锐角,且,求的值(6)在中,若,都是锐角,求.例3. 三角函数的增减性
6、1已知A为锐角,且sin A ,那么A的取值范围是A. 0 A 30 B. 30 A 60 C. 60 A 90 D. 30 A 902. 已知A为锐角,且,则 ( )A. 0 A 60 B. 30 A 60 C. 60 A 90 D. 30 A 90例4. 三角函数在几何中的应用1已知:如图,在菱形ABCD中,DEAB于E,BE16cm,求此菱形的周长2已知:如图,RtABC中,C90,作DAC30,AD交CB于D点,求:(1)BAD;(2)sinBAD、cosBAD和tanBAD3. 已知:如图ABC中,D为BC中点,且BAD90,求:sinCAD、cosCAD、tanCAD4.如图,在R
7、tABC中,C=90,点D在BC边上,DC= AC = 6,求tan BAD的值5.如图,ABC中,A=30,求AB的长.解直角三角形:1在解直角三角形的过程中,一般要用的主要关系如下: 在RtABC中,C90,ACb,BCa,ABc,三边之间的等量关系:_两锐角之间的关系:_ 边与角之间的关系:_;_;_;_直角三角形中成比例的线段 在RtABC中,C90,CDAB于DCD2_;AC2_; BC2_;ACBC_类型一例1在RtABC中,C90(1)已知:a35,求A、B,b;(2)已知:,求A、B,c;(3)已知:,求a、b;(4)已知:求a、c;(5)已知:A60,ABC的面积求a、b、c
8、及B例2已知:如图,ABC中,A30,B60,AC10cm求AB及BC的长例3已知:如图,RtABC中,D90,B45,ACD60BC10cm求AD的长例4已知:如图,ABC中,A30,B135,AC10cm求AB及BC的长类型二:解直角三角形的实际应用仰角与俯角:例1如图,从热气球C处测得地面A、B两点的俯角分别是30、45,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米B200米C220米D100()米例2已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点已知BAC
展开阅读全文