上海高考数学知识点整理(全).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《上海高考数学知识点整理(全).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海 高考 数学 知识点 整理 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、高考临近给你提个醒集合与简易逻辑1 区分集合中元素的形式:函数的定义域函数的值域函数图象上的点集方程的根(零点)例1集合,则 例2集合, 例3集合,集合,则 2研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。例4已知集合,集合,且,则 3集合的性质: 任何一个集合都是它本身的子集,记为。 空集是任何集合的子集,记为。 空集是任何非空集合的真子集,记为。注意:若条件为,在讨论的时候不要遗忘了的情况。例5集合,如果,实数的取值范围 集合的运算: 、; 、。 。 对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为:、。例6满足条件的集合共有 个。 4
2、研究集合之间的关系,当判断不清时,建议通过“具体化”的思想进行研究。例7已知,则。5补集思想常运用于解决否定型或正面较复杂的有关问题。例8设函数在区间上至少存在一个实数,使,求实数的取值范围 6命题是表达判断的语句。判断正确的叫做真命题;判断错误的叫做假命题。 命题的四种形式及其内在联系:原命题:如果,那么; 逆命题:如果,那么;否命题:如果,那么;逆否命题:如果,那么; 等价命题:对于甲、乙两个命题,如果从命题甲可以推出命题乙,同时从命题乙也可以推出命题甲,既“甲乙”,那么这样的两个命题叫做等价命题。 互为逆否命题一定是等价命题,但等价命题不一定是互为逆否命题。 当某个命题直接考虑有困难时,
3、可通过它的逆否命题来考虑。例9“”是“”的 条件。 注意命题“如果,那么”的否定与它的否命题的区别:命题“如果,那么”的否定是“如果,那么”;否命题是“如果,那么”。 *例10“若和都是偶数,则是偶数”的否命题是 否定是 7常见结论的否定形式:原结论是都是一定或且大于小于否定形式不是不都是不一定且或不大于不小于原结论至少一个至多一个至少个至多个对所有都成立对任何不成立否定形式一个也没有至少两个至多个至少个存在某不成立存在某成立8充要条件:条件结论推导关系判断结果是的充分条件是的必要条件且是的充要条件在判断“充要条件”的过程中,应注意步骤性:首先必须区分谁是条件、谁是结论,然后由推导关系判断结果
4、。不等式1基本性质:(注意:不等式的运算强调加法运算与乘法运算) 且 ; 推论:.; . 且; ; 推论:.; .且、同号;.; .; , ; ;2解不等式:(解集必须写成集合或区间的形式) 一元二次或一元高次不等式以及分式不等式的解题步骤:.分解因式找到零点; .画数轴标根画波浪线; .根据不等号,确定解集;注意点:.分解因式所得到的每一个因式必须为x的一次式; .每个因式中的系数必须为正。绝对值不等式 去绝对值:. ; .;.; .或;.;幂、指、对不等式 去掉幂、指、对符号 解不等式:解对数不等式时,应注意些什么问题?(化成同底、利用单调性、注意同解变形) 解含参数的不等式时,定义域是前
5、提,函数增减性为基础,分类讨论是关键。而分类讨论的关键在于“分界值”的确定以及注意解完之后要总结:综上所述对于不等式恒成立问题,常用“函数思想”、“分离变量思想”以及“图象思想”。例1已知不等式对一切恒成立,求的取值范围 3基本不等式:,则,当且仅当时,等号成立。 ,则,当且仅当时,等号成立。综上,若,则, 当且仅当时,等号成立。* 若,则 ,当且仅当时,等号成立。*。例2已知正数、满足,则的取值范围是 例3函数的最小值为 例4若,则的最小值是 例5正数、满足,则的最小值为 4不等式的证明: 比较法:作差 因式分解或配方 与“”比较大小 综合法:由因导果。 分析法:执果索因;基本步骤:要证即证
6、即证。 反证法:正难则反。最值法:,则恒成立; ,则恒成立。函数1九个基本函数必须熟练掌握:强调函数图象和性质正比例函数, 反比例函数, 一次函数, 二次函数, 幂、指、对函数, 三角函数,反三角函数。2反函数:当且仅当函数是一一对应函数时才具有反函数。 求反函数的步骤掌握了吗?解方程,用表示;交换与,写成反函数的形式; 注明反函数的定义域。 你还记得反函数的四个性质吗?互换性; 对称性; 单调一致性; 还原性。例1函数过点,则的反函数的图象一定经过点 若原函数在定义域上单调,则一定存在反函数;但一个函数存在反函数,则此函数不一定单调。你能写出一个具体的函数吗?例如:分段函数:或等。3函数的要
7、素:定义域、值域、对应法则 定义域:给出函数解析式,求函数的定义域(即求使函数解析式有意义的的范围)(1) ; (2) ;(3) ; (4);(5) ; (6);(7) ; (8) ;使实际问题有意义的自变量的范围。例2锐角中,则的值等于 ,的取值范围为 求复合函数的定义域: 若的定义域为,则的定义域由不等式解出; 若的定义域为,则的定义域相当于时的值域;例3函数的定义域为 例4若函数的定义域为,则函数的定义域为 例5若函数的定义域为,则函数的定义域为 值域:函数的值域(或最值)有哪几种常用解题方法?二次函数型或可化为二次函数型;单调性;基本不等式; 换元法;数形结合;例6函数的值域为 例7设
8、,成等差数列,,成等比数列,则的取值范围是 例8函数的值域为 例9函数的值域为 3函数的基本性质:奇偶性:定义判断奇偶性的步骤: 定义域是否关于原点对称; 对于任意,判断与的关系:若,也即为偶函数若,也即为奇函数图象判断奇偶性:函数图象关于原点对称奇函数; 函数图象关于轴对称偶函数;判断函数的奇偶性时,注意到定义域关于原点对称了吗?如果奇函数在处有定义,则。.一个函数既是奇函数又是偶函数,则该函数必为: (其中定义域关于原点对称)如果两个函数都是非零函数(定义域相交非空),则有:奇+奇奇;奇+偶非奇非偶;偶+偶偶;奇奇偶; 奇偶奇; 偶偶偶。单调性:设任意,且,则无单调性减函数; 增函数;在比
9、较与大小时,常用“作差法”,比较与的大小。奇函数的图象在轴两侧的单调性一致;偶函数的图象在轴两侧的单调性相反。互为反函数的单调性一致。增函数+增函数 增函数; 减函数+减函数 减函数。复合函数单调性由“同增异减”判定。例10函数的单调递增区间为 注意函数“单调性”、“奇偶性”的逆用(即如何体现函数的“奇偶性”、“单调性”)例11已知奇函数是定义在上的减函数,若,求实数的取值范围 最大值和最小值:参见函数的值域当取的中位数时,函数取最小值函数的零点:对于函数,如果存在实数,当时,那么就把叫做函数的零点。注:零点是数;用二分法求零点的理论依据是:函数在闭区间上连续;那么,一定存在,使得。(反之,未
10、必)以下性质不是函数的基本性质周期性:对于函数,如果存在一个非零常数,使得对于任意 时,恒有成立,那么函数叫做周期函数,非零常数叫做该函数的周期。任意,则 任意,则. 任意,则例12定义在上的偶函数满足,且在上是减函数,若、是锐角三角形的两个内角,则与的大小关系为 *若图像有两条对称轴、(),则必是周期函数,且一周期为。*若图像有两个对称中心、(),则是周期函数,且一周期为。*如果函数的图像有一个对称中心和一条对称轴(),则函数必是周期函数,且一周期为。例13已知定义在上的函数是以为周期的奇函数,则方程在上至少有 个实数根。 对称性:点关于轴的对称点为;函数关于轴的对称曲线方程为。点关于轴的对
11、称点为;函数关于轴的对称曲线方程为。点关于原点的对称点为;函数关于原点的对称曲线方程为两函数与的图像关于直线对称。函数满足,则函数的图象关于直线对称。例14二次函数满足,且方程有等根,则 例15己知函数,若的图像是,它关于直线对称图像是,关于原点对称的图像为,则对应的函数解析式是 例16函数与函数的图象关于点对称,则 形如的图像是双曲线,对称中心是点,两条渐近线分别为,。例17已知函数图象与:关于直线对称,且图象关于点对称,则 4函数图象变换: 平移变换:函数的图象 函数的图象;函数的图象 函数的图象; 伸缩变换:函数的图象 函数的图象;函数的图象 函数的图象; 对称变换:函数的图象 函数的图
12、象;函数的图象 函数的图象;函数的图象 函数的图象;函数的图象 函数图象;函数的图象 函数图象;例18要得到的图像,只需作关于_轴对称的图像,再向_平移个单位而得到。 例19将函数的图象向右平移个单位后又向下平移个单位,所得图象如果与原图象关于直线对称,那么 ( )(A) ,; (B) ,; (C) , ; (D) ,;5常见的抽象函数模型: 正比例函数模型:。 幂函数模型:;。 指数函数模型:;。 对数函数模型:;。 三角函数模型:。6三个二次(哪三个二次)的关系以及应用掌握了吗? 在研究三个二次时,你注意到二次项系数非零了吗? 如何利用二次函数来研究一元二次方程、一元二次不等式的问题。 一
13、元二次函数的研究强调数形结合,那么数形结合该从哪些方面去研究?(开口、对称轴、定义域以及偏移度) 特别提醒:二次方程的两根即为不等式解集的端点值,也是二次函数图象与轴交点的横坐标。7研究函数问题准备好“数形结合”这个工具了吗?8研究函数的性质注意在定义域内进行了吗?9解对数函数问题时注意到真数以及底数的限制了吗?10指数运算法则:. ; . ; . ;11对数运算法则:; ; ; ;三角1三角比的定义你还记得吗?2三角公式你记住了吗? 同角三角比的关系:商数关系、倒数关系、平方关系; 诱导公式:奇变偶不变,符号看象限。 你能用“小三角形”进行同角三角比的转换吗?3三角化简,强调哪两点? 切、割
14、化弦; 化繁为简。4三角条件求值你注意到两个关系了吗?(角的关系、名的关系) 例如:;例1已知,则 例2已知、为锐角,则关于的函数关系为 5在三角中,你知道“”等于什么吗? 。6重要公式: ; ; ;例3当函数取最大值时, 7你还记得在弧度制下弧长公式以及扇形的面积公式吗?你注意到了扇形的弧长与周长的区别了吗?()弧长公式:; 周长公式:; 面积公式:;例4已知扇形的周长是,该扇形的中心角是弧度,求该扇形的面积 8正弦定理、余弦定理的各种表达形式你还记得吗?会用它们解斜三角形吗?如何实现边角互化? 正弦定理: 余弦定理:;面积公式:;大边对大角:;锐角中:若,则;钝角中:若,则;直角中:若,则
15、;例5在中,若,则 (注意几解) 在中,若,则 (注意几解) *9三角形与向量综合的有关结论: 在中,给出,是的外心;(外心:中垂线的交点) 在中,给出,是的重心;(重心:三边中线的交点) 在中,给出,是的垂心;(垂心:高的交点)在中,给出,所在直线经过的内心;在中,给出,等于已知是中边的中线;例6是所在平面内一点,且满足,则的形状为 例7若为边的中点,所在平面内一点,满足,设,则 例8若是的外心,且,则角 10你能迅速画出三角函数(正弦、余弦、正切)的图象吗?你知道三角函数线吗?能写出它们的单调区间及其取最值时的集合吗?(别忘了);能给出三角函数的对称轴、对称点吗?11会用五点法画函数“”的
16、草图吗?哪五点?会根据图象求出参数、的值吗?12形如、的最小正周期会求吗?有关函数周期的定义还记得吗?周期函数有何性质?13反三角的处理思想是什么?(回归思想: 设、 化、 范围,回到三角范围求解)14你能熟练的画出反三角函数:、的图象吗?并结合图象,你能说明反三角函数的性质吗?15在三角函数中求一个角时,注意考虑两方面要求: 先求出某一个三角函数值; 再判定角的范围。16三角不等式或三角方程的通解一般式你注明“”了吗?17在用反三角表示直线的倾斜角、两直线的夹角、异面直线所成角、线面角、二面角、向量夹角时,是否注意到它们的范围?直线的倾斜角:;两直线的夹角:;异面直线所成角:;线面角:; 二
17、面角:;向量夹角:;数列:1数列的本质是什么?(定义在正整数集或其子集上的函数)。2等差数列的通项公式与一次函数有什么关系?等比数列的通项公式与指数函数有什么关系?3等差数列的求和公式有几个?等比数列的求和公式应注意什么?4设是数列的前项和,则“是等差数列”的充要条件是“,其中公差”。设是数列的前项和,则“是非常数等比数列”的充要条件是“,其中公比是”。5常数列: 是公差的等差数列;非零常数列既是等差数列,又是等比数列;既是等差数列又是等比数列的数列必为非零常数列6若是等差数列,则是等比数列();若是等比数列,则是等差数列;7对于等差、等比数列,你是否掌握了类比思想?8等差数列、等比数列有哪些
18、重要性质?你注意到它们的性质的关键在于下标以及结构特征了吗?等 差 数 列等 比 数 列定义从第二项起,后一项减前一项的差是同一个常数,则该数列为等差数列。1. 从第二项起,后一项与前一项的比是同一非零常数,则该数列为等比数列。1.通项公式前项和公式 通项公式与前项和公式之间的关系:性质12. 12. 3若,则:3若,则: 4.若是公差为的等差数列,则:是公差为的等差数列。4.若是公差为的等差数列,则:是公比为的等比数列。5.,分别是公差为,的等差数列,、是常数,则:是公差为的等差数列。5.,分别是公比为,的等比数列,、是非零常数,则:是公比为的等比数列;是公比为的等比数列。例1已知是等比数列
19、,且的前项和,则 例2在等比数列中,公比是整数,则 9无论是在等差数列还是在等比数列中,共有五个关键量:、或,如果已知其中三个量,则可由及的公式,求出其余两个量(知三求二);10求数列通项公式有哪几种典型类型? 或型(定义等差或等比数列利用公式) 已知或型 (累计求和或累计求积) 已知 ()型(等式左右两边同时减去) 已知和,求项,则:(是否注意到“”?)利用迭代、递推的方法数学归纳法证明(用数学归纳法证明问题的关键是什么?是否具有从特殊到一般的思维模式)例3数列满足,则 例4数列满足,则 例5数列满足,则 例6数列满足,则 11求数列的最大、最小项的方法:注意点:由于是正整数,注意等号成立。
展开阅读全文