三角函数知识点总结及同步练习.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《三角函数知识点总结及同步练习.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 知识点 总结 同步 练习
- 资源描述:
-
1、 必修四第一章三角函数 1.1任意角与弧度制一、任意角和弧度制1、角的概念的推广定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角,记作:角或 可以简记成。注意:(1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于轴正半轴 (3)“正角”与“负角”这是由旋转的方向所决定的。2、角的分类: 由于用“旋转”定义角之后,角的围大扩大了。可以将角分为正角、零角和负角。正角:按照逆时针方向转定的角。零角:没有发生任何旋转的角。负角:按照顺时针方向旋转的角。3、“象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标
2、原点,角的始边合于轴的正半轴。角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。4、常用的角的集合表示方法、终边相同的角:(1)终边相同的角都可以表示成一个0到360的角与个周角的和。(2)所有与a终边相同的角连同a在可以构成一个集合 即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和注意:1、 2、是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360的整数倍。4、一般的,终边相同的角的表达形式不唯一。、终边在坐标轴上的点:终边在x轴上的角的集合: 终边在y轴上的角的集合:
3、终边在坐标轴上的角的集合: 、终边共线且反向的角:终边在y=x轴上的角的集合: 终边在轴上的角的集合:、终边互相对称的角:若角与角的终边关于x轴对称,则角与角的关系:若角与角的终边关于y轴对称,则角与角的关系:若角与角的终边在一条直线上,则角与角的关系:角与角的终边互相垂直,则角与角的关系:二、弧度与弧度制、弧度与弧度制:弧度制另一种度量角的单位制, 它的单位是rad 读作弧度定义:长度等于 的弧所对的圆心角称为1弧度的角。orC2rad1radrl=2roAAB 如图:AOB=1rad ,AOC=2rad , 周角=2prad 注意:1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是
4、02、角a的弧度数的绝对值 (为弧长,为半径)3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。4、在同一个式子中角度、弧度不可以混用。、角度制与弧度制的换算弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系: 360= rad 180= rad 1= 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.三、弧长公式和扇形面积公式 ; 1.2 任意角的三角函数一、三角函数定义如图,设锐角的顶点与原点重合,始边与轴的正半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离)。(
5、1)比值叫做的正弦,记作,即;(2)比值叫做的余弦,记作,即;(3)比值叫做的正切,记作,即;(4)比值叫做的余切,记作,即;(5)比值叫做的正割,记作,即;(6)比值叫做的余割,记作,即二、三角函数的定义域、值域的始边与轴的非负半轴重合,的终边没有表明一定是正角或负角,以及的大小,只表明与的终边相同的角所在的位置; 根据相似三角形的知识,对于确定的角,六个比值不以点在的终边上的位置的改变而改变大小;当时,的终边在轴上,终边上任意一点的横坐标都等于,所以与无意义;同理,当时,与无意义;除以上两种情况外,对于确定的值,比值、分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变
6、量,一比值为函数值的函数,以上六种函数统称为三角函数。三角函数的定义域、值域函 数定 义 域值 域三三角函数的符号由三角函数的定义,以及各象限点的坐标的符号,我们可以得知:正弦值对于第一、二象限为正(),对于第三、四象限为负();余弦值对于第一、四象限为正(),对于第二、三象限为负();正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号)说明:若终边落在轴线上,则可用定义求出三角函数值。为正 全正为正 为正四、诱导公式1、由三角函数的定义,就可知道:终边相同的角三角函数值相同。即有:,其中,这组公式的作用是可把任意角的三角函数值问题转化为02间角的三角函数值问题2、三角函数诱导公式
7、()的本质是:奇变偶不变(对而言,指取奇数或偶数),符号看象限(看原函数,同时可把看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k+,;(2)转化为锐角三角函数五、三角函数线的定义:()()()()设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有, ,我们就分别称有向线段为正弦线、余弦线、正切线。三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交
8、点的切线上,三条有向线段中两条在单位圆,一条在单位圆外。三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的为负值。三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。注:(1)三角函数线的特征是:正弦线MP“站在轴上(起点在轴上)”、余弦线OM“躺在轴上(起点是原点)”、正切线AT“站在点处(起点是)”.(2)三角函数线的重要应用是比较三角函数值的大小和解三角不等式。六、同角三角函数的基本关系式:(1)平方关系:(2)倒数关系:sincsc=1,cosse
9、c=1,tancot=1,(3)商数关系:同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。在运用平方关系解题时,要根据已知角的围和三角函数的取值,尽可能地压缩角的围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。1.3三角函数的诱导公式知识点1:诱导公式(二)sin(180+)=sin cos(180+)=costg(180+)=tg(2)结构特征:函数名不变,符号看象限(把看作锐角时)把求(180+)的三角函数值转化为求的三角函数值。知识点2:诱导
10、公式(三)sin()=sin cos()=costg()=tg结构特征:函数名不变,符号看象限(把看作锐角)把求()的三角函数值转化为求的三角函数值知识点3:诱导公式(四)Sin()SinCos()cosTen()tan知识点4:诱导公式(五) 知识点5:诱导公式(六)1.4三角函数的图像与性质一、正弦函数余弦函数的图象(1)函数y=sinx的图象第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2这一段分成n(这里n=12)等份.(预备:取自变量x值弧度制下角与实数的对应).第二步:在单位圆中画出对应于角,,,2的正
11、弦线正弦线(等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ). 第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x0,2的图象根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2,就得到y=sinx,xR的图象.把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象. (2)余弦函数y=cosx的图象用几何法作余弦函数的图象,可以用“反射法”将角x的余弦线“竖立”把
12、坐标轴向下平移,过作与x轴的正半轴成角的直线,又过余弦线A的终点A作x轴的垂线,它与前面所作的直线交于A,那么A与AA长度相等且方向同时为正,我们就把余弦线A“竖立”起来成为AA,用同样的方法,将其它的余弦线也都“竖立”起来再将它们平移,使起点与x轴上相应的点x重合,则终点就是余弦函数图象上的点 也可以用“旋转法”把角 的余弦线“竖立”(把角x 的余弦线O1M按逆时针方向旋转到O1M1位置,则O1M1与O1M长度相等,方向相同.)根据诱导公式,还可以把正弦函数x=sinx的图象向左平移单位即得余弦函数y=cosx的图象.(1) 正切函数y=tanx的图像:二、五点法作图用五点法作正弦函数和余弦
13、函数的简图(描点法):正弦函数y=sinx,x0,2的图象中,五个关键点是:(0,0) (,1) (p,0) (,-1) (2p,0)余弦函数y=cosx x0,2p的五个点关键是(0,1) (,0) (p,-1) (,0) (2p,1)只要这五个点描出后,图象的形状就基本确定了因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握三、奇偶性 请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数当自变量取一对相反数时,函数y取同一值。例如:f(-)=,f()= ,即f(-)=f();由于cos(x)=cosx f(-x)= f(x). 以
14、上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。定义:一般地,如果对于函数f(x)的定义域任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。(2)正弦函数观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。也就是说,如果点(x,y)是函数y=sinx的图象上任一点,那么与它关
15、于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。定义:一般地,如果对于函数f(x)的定义域任意一个x,都有 f(x)=f(x) ,那么函数f(x)就叫做奇函数。例如:函数y=x, y= 都是奇函数。如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:(1)其定义域关于原点对称;(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;
16、若定义域关于原点不对称,则函数没有奇偶性。四、.单调性从ysinx,x的图象上可看出:当x,时,曲线逐渐上升,sinx的值由1增大到1.当x,时,曲线逐渐下降,sinx的值由1减小到1.结合上述周期性可知:正弦函数在每一个闭区间2k,2k(kZ)上都是增函数,其值从1增大到1;在每一个闭区间2k,2k(kZ)上都是减函数,其值从1减小到1.余弦函数在每一个闭区间(2k1),2k(kZ)上都是增函数,其值从1增加到1;在每一个闭区间2k,(2k1)(kZ)上都是减函数,其值从1减小到1.有关对称轴:观察正、余弦函数的图形,可知y=sinx的对称轴为x= kZ,y=cosx的对称轴为x= kZ15
展开阅读全文