书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型三角形的证明测试卷(源于中考的试题)汇总.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5518292
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:16
  • 大小:370KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《三角形的证明测试卷(源于中考的试题)汇总.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    三角形 证明 测试 源于 中考 试题 汇总
    资源描述:

    1、第一章 三角形的证明测试卷(源于中考的试题)参考答案与试题解析一选择题(共9小题)1(2013郴州)如图,在RtACB中,ACB=90,A=25,D是AB上一点将RtABC沿CD折叠,使B点落在AC边上的B处,则ADB等于()A25B30C35D40解答:解:在RtACB中,ACB=90,A=25,B=9025=65,CDB由CDB反折而成,CBD=B=65,CBD是ABD的外角,ADB=CBDA=6525=40故选D2(2012潍坊)轮船从B处以每小时50海里的速度沿南偏东30方向匀速航行,在B处观测灯塔A位于南偏东75方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60方向上,则

    2、C处与灯塔A的距离是()海里A25B25C50D25解答:解:根据题意,1=2=30,ACD=60,ACB=30+60=90,CBA=7530=45,ABC为等腰直角三角形,BC=500.5=25,AC=BC=25(海里)故选D3(2011贵阳)如图,ABC中,C=90,AC=3,B=30,点P是BC边上的动点,则AP长不可能是()A3.5B4.2C5.8D7解答:解:根据垂线段最短,可知AP的长不可小于3;ABC中,C=90,AC=3,B=30,AB=6,AP的长不能大于6 故选D4(2012铜仁地区)如图,在ABC中,ABC和ACB的平分线交于点E,过点E作MNBC交AB于M,交AC于N,

    3、若BM+CN=9,则线段MN的长为()A6B7C8D9考点:等腰三角形的判定与性质;平行线的性质1518028分析:由ABC、ACB的平分线相交于点E,MBE=EBC,ECN=ECB,利用两直线平行,内错角相等,利用等量代换可MBE=MEB,NEC=ECN,然后即可求得结论解答:解:ABC、ACB的平分线相交于点E,MBE=EBC,ECN=ECB,MNBC,EBC=MEB,NEC=ECB, MBE=MEB,NEC=ECN,BM=ME,EN=CN,MN=ME+EN,即MN=BM+CNBM+CN=9MN=9, 故选D5(2011恩施州)如图,AD是ABC的角平分线,DFAB,垂足为F,DE=DG,

    4、ADG和AED的面积分别为50和39,则EDF的面积为()A11B5.5C7D3.5考点:角平分线的性质;全等三角形的判定与性质1518028专题:计算题;压轴题分析:作DM=DE交AC于M,作DNAC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求解答:解:作DM=DE交AC于M,作DNAC,DE=DG,DM=DE,DM=DG,AD是ABC的角平分线,DFAB,DF=DN,在RtDEF和RtDMN中,RtDEFRtDMN(HL),ADG和AED的面积分别为50和39,SMDG=SADGSADM=5039=11,SDNM=SDEF=SMDG=5.5故选B点评

    5、:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求6(2012广州)在RtABC中,C=90,AC=9,BC=12,则点C到AB的距离是()ABCD解答:解:根据题意画出相应的图形,如图所示:在RtABC中,AC=9,BC=12,根据勾股定理得:AB=15,过C作CDAB,交AB于点D,又SABC=ACBC=ABCD,CD=,则点C到AB的距离是 故选A7(2007芜湖)如图,在ABC中ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A1B2C3D4解答:解:

    6、在ABC中,ADBC,CEAB,AEH=ADB=90;EAH+AHE=90,DHC+BCH=90,EHA=DHC(对顶角相等),EAH=DCH(等量代换);在BCE和HAE中,AEHCEB(AAS);AE=CE;EH=EB=3,AE=4,CH=CEEH=AEEH=43=1 故选A8(2011泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()ABCD6解答:解:CEO是CEB翻折而成,BC=OC,BE=OE,B=COE=90,EOAC,O是矩形ABCD的中心,OE是AC的垂直平分线,AC=2BC=23=6,AE=CE,在RtA

    7、BC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在RtAOE中,设OE=x,则AE=3x,AE2=AO2+OE2,即(3x)2=32+x2,解得x=,AE=EC=3=2故选A9(2012深圳)如图,已知:MON=30,点A1、A2、A3在射线ON上,点B1、B2、B3在射线OM上,A1B1A2、A2B2A3、A3B3A4均为等边三角形,若OA1=1,则A6B6A7的边长为()A6B12C32D64解答:解:A1B1A2是等边三角形,A1B1=A2B1,3=4=12=60,2=120,MON=30,1=18012030=30,又3=60,5=1806030=90,MON=1=

    8、30,OA1=A1B1=1,A2B1=1,A2B2A3、A3B3A4是等边三角形,11=10=60,13=60,4=12=60,A1B1A2B2A3B3,B1A2B2A3,1=6=7=30,5=8=90,A2B2=2B1A2,B3A3=2B2A3,A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32故选:C二填空题(共8小题)10(2011怀化)如图,在ABC中,AB=AC,BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=4考点:勾股定理;等腰三角形的性质1518028分析:首先根据等腰三角形的性质:等腰三角形的三

    9、线合一,求出DB=DC=CB,ADBC,再利用勾股定理求出AD的长解答:解:AB=AC,AD是BAC的角平分线,DB=DC=CB=3,ADBC,在RtABD中,AD2+BD2=AB2,AD=4,故答案为:4点评:此题主要考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出ADB是直角三角形11(2011衡阳)如图所示,在ABC中,B=90,AB=3,AC=5,将ABC折叠,使点C与点A重合,折痕为DE,则ABE的周长为7考点:翻折变换(折叠问题);勾股定理1518028专题:压轴题;探究型分析:先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出

    10、ABE的周长解答:解:在ABC中,B=90,AB=3,AC=5,BC=4,ADE是CDE翻折而成,AE=CE,AE+BE=BC=4,ABE的周长=AB+BC=3+4=7故答案为:7点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等12(2010滨州)如图,等边ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为考点:轴对称-最短路线问题;勾股定理1518028专题:压轴题;动点型分析:要求EM+CM的最小值,需考虑通过作辅助线转化EM,CM的值,从而找出其最

    11、小值求解解答:解:连接BE,与AD交于点M则BE就是EM+CM的最小值取CE中点F,连接DF等边ABC的边长为6,AE=2,CE=ACAE=62=4,CF=EF=AE=2,又AD是BC边上的中线,DF是BCE的中位线,BE=2DF,BEDF,又E为AF的中点,M为AD的中点,ME是ADF的中位线,DF=2ME,BE=2DF=4ME,BM=BEME=4MEME=3ME,BE=BM在直角BDM中,BD=BC=3,DM=AD=,BM=,BE=EM+CM=BEEM+CM的最小值为点评:考查等边三角形的性质和轴对称及勾股定理等知识的综合应用13(2013泰安)如图,在RtABC中,ACB=90,AB的垂

    12、直平分线DE交AC于E,交BC的延长线于F,若F=30,DE=1,则BE的长是2考点:含30度角的直角三角形;线段垂直平分线的性质1518028专题:压轴题分析:根据同角的余角相等、等腰ABE的性质推知DBE=30,则在直角DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度解答:解:ACB=90,FDAB,ACB=FDB=90,F=30,A=F=30(同角的余角相等)又AB的垂直平分线DE交AC于E,EBA=A=30,直角DBE中,BE=2DE=2故答案是:2点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形解题的难点是推知EBA=3014(2013黔西南州)如图,

    13、已知ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则E=15度考点:等边三角形的性质;三角形的外角性质;等腰三角形的性质1518028专题:压轴题分析:根据等边三角形三个角相等,可知ACB=60,根据等腰三角形底角相等即可得出E的度数解答:解:ABC是等边三角形,ACB=60,ACD=120,CG=CD,CDG=30,FDE=150,DF=DE,E=15故答案为:15点评:本题考查了等边三角形的性质,互补两角和为180以及等腰三角形的性质,难度适中15(2005绵阳)如图,在ABC中,BC=5cm,BP、CP分别是ABC和ACB的角平分线,且PDAB,PEAC,则

    14、PDE的周长是5cm考点:等腰三角形的判定与性质;平行线的性质1518028专题:压轴题分析:分别利用角平分线的性质和平行线的判定,求得DBP和ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么PDE的周长就转化为BC边的长,即为5cm解答:解:BP、CP分别是ABC和ACB的角平分线,ABP=PBD,ACP=PCE,PDAB,PEAC,ABP=BPD,ACP=CPE,PBD=BPD,PCE=CPE,BD=PD,CE=PE,PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm答:PDE的周长是5cm点评:此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等

    15、知识点本题的关键是将PDE的周长就转化为BC边的长16(2008陕西)如图,梯形ABCD中,ABDC,ADC+BCD=90,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S2=S1+S3考点:勾股定理1518028专题:压轴题分析:过点A作AEBC交CD于点E,得到平行四边形ABCE和RtADE,根据平行四边形的性质和勾股定理,不难证明三个正方形的边长对应等于所得直角三角形的边解答:解:过点A作AEBC交CD于点E,ABDC,四边形AECB是平行四边形,AB=CE,BC=AE,BCD=AED,ADC+BCD=90,DC=

    16、2AB,AB=DE,ADC+AED=90,DAE=90,那么AD2+AE2=DE2,S1=AD2,S2=AB2=DE2,S3=BC2=AE2S2=S1+S3点评:本题的关键在于通过作辅助线把梯形的问题转换为平行四边形和直角三角形的问题,然后把三个正方形的边长整理到一个三角形中进行解题17(2005十堰)如图中的螺旋由一系列直角三角形组成,则第n个三角形的面积为考点:勾股定理1518028专题:规律型分析:根据勾股定理,逐一进行计算,从中寻求规律,进行解答解答:解:根据勾股定理:第一个三角形中:OA12=1+1,S1=112;第二个三角形中:OA22=OA12+1=1+1+1,S2=OA112=

    17、12;第三个三角形中:OA32=OA22+1=1+1+1+1,S3=OA212=12;第n个三角形中:Sn=12=点评:本题主要考查了勾股定理的应用,要注意图中三角形的面积的变化规律三解答题(共5小题)18(2013温州)如图,在ABC中,C=90,AD平分CAB,交CB于点D,过点D作DEAB于点E(1)求证:ACDAED;(2)若B=30,CD=1,求BD的长考点:全等三角形的判定与性质;角平分线的性质;含30度角的直角三角形1518028分析:(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出DEB=90,DE=1,根据含30度角的直角三角形性质求出即可解

    18、答:(1)证明:AD平分CAB,DEAB,C=90,CD=ED,DEA=C=90,在RtACD和RtAED中RtACDRtAED(HL);(2)解:DC=DE=1,DEAB,DEB=90,B=30,BD=2DE=2点评:本题考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等19(2013沈阳)如图,ABC中,AB=BC,BEAC于点E,ADBC于点D,BAD=45,AD与BE交于点F,连接CF(1)求证:BF=2AE;(2)若CD=,求AD的长考点:全等三角形的判定与性质;勾股定理1518028专题:证明题;压轴题分析:(1)先判定出

    19、ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出CAD=CBE,然后利用“角边角”证明ADC和BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AF,从而得证;(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解解答:(1)证明:ADBC,BAD=45,ABD是等腰直角三角形,AD=BD,BEAC,ADBC,CAD+ACD=90,CBE+ACD=90,CAD=CBE,在ADC和BDF中

    20、,ADCBDF(ASA),BF=AC,AB=BC,BEAC,AC=2AE,BF=2AE;(2)解:ADCBDF,DF=CD=,在RtCDF中,CF=2,BEAC,AE=EC,AF=CF=2,AD=AF+DF=2+点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键20(2007福州)如图,直线ACBD,连接AB,直线AC、BD及线段AB把平面分成、四个部分,规定:线上各点不属于任何部分当动点P落在某个部分时,连接PA,PB,构成PAC,APB,PBD三个

    21、角(提示:有公共端点的两条重合的射线所组成的角是0角)(1)当动点P落在第部分时,求证:APB=PAC+PBD;(2)当动点P落在第部分时,APB=PAC+PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第部分时,全面探究PAC,APB,PBD之间的关系,并写出动点P的具体位置和相应的结论选择其中一种结论加以证明考点:平行线的性质;角平分线的性质1518028专题:动点型;探究型分析:(1)如图1,延长BP交直线AC于点E,由ACBD,可知PEA=PBD由APB=PAE+PEA,可知APB=PAC+PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三

    22、种情况讨论解答:解:(1)解法一:如图1延长BP交直线AC于点EACBD,PEA=PBDAPB=PAE+PEA,APB=PAC+PBD;解法二:如图2过点P作FPAC,PAC=APFACBD,FPBDFPB=PBDAPB=APF+FPB=PAC+PBD;解法三:如图3,ACBD,CAB+ABD=180,PAC+PAB+PBA+PBD=180又APB+PBA+PAB=180,APB=PAC+PBD(2)不成立(3)(a)当动点P在射线BA的右侧时,结论是PBD=PAC+APB(b)当动点P在射线BA上,结论是PBD=PAC+APB或PAC=PBD+APB或APB=0,PAC=PBD(任写一个即可

    23、)(c)当动点P在射线BA的左侧时,结论是PAC=APB+PBD选择(a)证明:如图4,连接PA,连接PB交AC于MACBD,PMC=PBD又PMC=PAM+APM(三角形的一个外角等于与它不相邻的两个内角的和),PBD=PAC+APB选择(b)证明:如图5点P在射线BA上,APB=0度ACBD,PBD=PACPBD=PAC+APB或PAC=PBD+APB或APB=0,PAC=PBD选择(c)证明:如图6,连接PA,连接PB交AC于FACBD,PFA=PBDPAC=APF+PFA,PAC=APB+PBD点评:此题考查了角平分线的性质;是一道探索性问题,旨在考查同学们对材料的分析研究能力和对平行

    24、线及角平分线性质的掌握情况认真做好(1)(2)小题,可以为(3)小题提供思路21(2013抚顺)在RtABC中,ACB=90,A=30,点D是AB的中点,DEBC,垂足为点E,连接CD(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系考点:全等三角形的判定与性质;等边三角形的判定与性质;含30

    25、度角的直角三角形1518028分析:(1)由ACB=90,A=30得到B=60,根据直角三角形斜边上中线性质得到DB=DC,则可判断DCB为等边三角形,由于DEBC,DE=BC;(2)根据旋转的性质得到PDF=60,DP=DF,易得CDP=BDF,则可根据“SAS”可判断DCPDBF,则CP=BF,利用CP=BCBP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到DCPDBF得到CP=BF,而CP=BC+BP,则BFBP=BC,所以BFBP=DE解答:解:(1)ACB=90,A=30,B=60,点D是AB的中点,DB=DC,DCB为等边三角形,DEBC,DE=BC;故答案为

    26、DE=BC(2)BF+BP=DE理由如下:线段DP绕点D逆时针旋转60,得到线段DF,PDF=60,DP=DF,而CDB=60,CDBPDB=PDFPDB,CDP=BDF,在DCP和DBF中,DCPDBF(SAS),CP=BF,而CP=BCBP,BF+BP=BC,DE=BC,BC=DE,BF+BP=DE;(3)如图,与(2)一样可证明DCPDBF,CP=BF,而CP=BC+BP,BFBP=BC,BFBP=DE点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系22(2013铜仁地区)如图,ABC和ADE都是等腰三角形,且BAC=90,DAE=90,B,C,D在同一条直线上求证:BD=CE考点:全等三角形的判定与性质;等腰直角三角形1518028专题:证明题分析:求出AD=AE,AB=AC,DAB=EAC,根据SAS证出ADBAEC即可解答:证明:ABC和ADE都是等腰直角三角形AD=AE,AB=AC,又EAC=90+CAD,DAB=90+CAD,DAB=EAC,在ADB和AEC中ADBAEC(SAS),BD=CE点评:本题考查了等腰直角三角形性质,全等三角形的性质和判定的应用,关键是推出ADBAEC

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:三角形的证明测试卷(源于中考的试题)汇总.doc
    链接地址:https://www.163wenku.com/p-5518292.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库