三角函数知识点整理.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《三角函数知识点整理.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 知识点 整理
- 资源描述:
-
1、1. 角的有关概念(1)角的概念:角可以看成是由一条射线绕着它的端点旋转而成的。射线的端点叫做角的顶点;旋转开始时的射线叫做角的始边;旋转终止时的射线叫做角的终边。(2)正角、负角和零角按逆时针方向旋转而成的角叫做正角;按顺时针方向旋转而成的角叫做负角;当一条射线没有作任何旋转时而成的角叫做零角.(3)象限角在平面直角坐标系下,使角的顶点与坐标原点重合,角的始边与x轴的正半轴重合,角的终边落在第几象限,就把这个角称做第几象限角,若角的终边落在坐标轴上,称为轴线角,这个角不属于任何象限.(4)各个象限的半角范围可以用下图记忆,图中的、分别指第一、二、三、四象限角的半角范围;(5)终边相同的角与角
2、终边相同的角所组成的集合:S=2. 角度制与弧度制设扇形的弧长为,圆心角为(rad),半径为R,面积为S角的弧度数公式2(/360)角度与弧度的换算360=2 rad1=/180rad1rad=180/=571857.3弧长公式扇形的面积公式3. 任意角的三角函数三角函数(6个)表示:为任意角,角的终边上任意点P的坐标为,它与原点的距离为(r0,当点P在单位圆上时,r=1)那么角的正弦、余弦、正切、余切、正割、余割分别是: , ,.4. 同角三角函数关系式 倒数关系: 商数关系:, 平方关系:5. 三角函数符号规律6. 特殊锐角(0,30,45,60,90)的三角比的值 7. 诱导公式:(奇变
3、偶不变,符号看象限)k/2+所谓奇偶指的是整数k的奇偶性公式三角函数诱导公式一诱导公式二诱导公式三诱导公式四诱导公式五诱导公式六注:8. 两角和与差的三角函数:(1) 两角和与差公式:(2) 二倍角公式:(3)半角公式(可由降幂公式推导出):, ,(4)辅助角公式(5)三角函数的积化和差,可得:(6)三角函数的和差化积公式9.三角函数的图像和性质:(其中)三角函数图象定义域RR值域-1,1-1,1R最小正周期奇偶性奇偶奇单调性单调递增单调递减单调递增单调递减单调递增对称性(对称轴)(对称中心)(对称轴)(对称中心)(对称中心)零值点最值点 ,,;, 无10.函数的图像与性质:(本节知识考察一般
4、能化成形如图像及性质)(1) 函数和的周期都是(2) 函数和的周期都是(3) 五点法作的简图,设,取0、来求相应的值以及对应的y值再描点作图。t (4) 经过变换变为的步骤:方法1:先平移后伸缩方法2:先伸缩后平移(5) 函数的平移变换: 将图像沿轴向左(右)平移个单位(左加右减) 将图像沿轴向上(下)平移个单位(上加下减)函数的伸缩变换: 将图像纵坐标不变,横坐标缩到原来的倍(缩短, 伸长) 将图像横坐标不变,纵坐标伸长到原来的A倍(伸长,缩短)函数的对称变换: ) 将图像绕轴翻折180(整体翻折)(对三角函数来说:图像关于轴对称) 将图像绕轴翻折180(整体翻折)(对三角函数来说:图像关于
5、轴对称) 将图像在轴右侧保留,并把右侧图像绕轴翻折到左侧(偶函数局部翻折) 保留在轴上方图像,轴下方图像绕轴翻折上去(局部翻动)11.正、余弦定理:正弦定理:在中有:(为外接圆半径) 面积公式:余弦定理:在三角形中有: 5.三角变换:三角变换是运算化简过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算、化简的方法技能。(1) 角的变换:角之间的和差、倍半、互补、互余等关系对角变换,还可作添加、删除角的恒等变形(2) 函数名称变换:三角变形中常常需要变函数名称为同名函数。采用公式: 其中(3) 常数代换:在三角函数运算、求值、证明中有时候需将常数转化为三角函数,特
展开阅读全文