书签 分享 收藏 举报 版权申诉 / 40
上传文档赚钱

类型(完整版)函数图像问题高考试题精选.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5515482
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:40
  • 大小:1.37MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)函数图像问题高考试题精选.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 函数 图像 问题 高考 试题 精选
    资源描述:

    1、函数图像问题高考试题精选一选择题(共34小题)1函数f(x)=(x22x)ex的图象大致是()ABCD2函数y=x+cosx的大致图象是()ABCD3函数y=的图象大致是()ABCD4函数y=xln|x|的大致图象是()ABCD5函数f(x)=x22|x|的图象大致是()ABCD6函数f(x)=+ln|x|的图象大致为()ABCD7在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()ABCD8函数y=xln|x|的图象大致是()ABCD9f(x)=的部分图象大致是()ABCD10函数的图象大致为()ABCD11函数f(x)=(其中e为自然对数的底数)的图象大致为()AB

    2、CD12函数f(x)=(2x2x)cosx在区间5,5上的图象大致为()ABCD13函数的部分图象大致为()ABCD14函数f(x)=的部分图象大致为()ABCD15函数的部分图象大致为()ABCD16函数y=x(x21)的大致图象是()ABCD17函数y=x2sinx,x,的大致图象是()ABCD18函数f(x)=的部分图象大致是()AB.C.D.19函数y=2x2+2|x|在2,2的图象大致为()ABCD20函数的图象大致是()ABCD21函数f(x)=(x2,2)的大致图象是()ABCD22函数的图象大致是()ABCD23函数y=的大致图象是()ABCD24函数y=sinx(1+cos2

    3、x)在区间2,2上的图象大致为()ABCD25函数f(x)=(x23)ln|x|的大致图象为()ABCD26函数f(x)=eln|x|+x的大致图象为()ABCD27函数y=1+x+的部分图象大致为()ABCD28函数y=的部分图象大致为()ABCD29函数f(x)=xln|x|的图象可能是()ABCD30函数f(x)=eln|x|+的大致图象为()ABCD31函数y=的一段大致图象是()ABCD32函数的图象大致是()ABCD33函数的大致图象是()ABCD34函数的图象大致为()ABCD二解答题(共6小题)35在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1

    4、的极坐标方程为cos=4(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求OAB面积的最大值36在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4cos()说明C1是哪种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为=0,其中0满足tan0=2,若曲线C1与C2的公共点都在C3上,求a37在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线

    5、C2的极坐标方程为sin(+)=2(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标38在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为 ,(t为参数)(1)若a=1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a39在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数)设P为曲线C上的动点,求点P到直线l的距离的最小值40在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数)设l1与l2的交点为P,当k变化时,P

    6、的轨迹为曲线C(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos+sin)=0,M为l3与C的交点,求M的极径函数图像问题高考试题精选参考答案与试题解析一选择题(共34小题)1函数f(x)=(x22x)ex的图象大致是()ABCD【解答】解:因为f(0)=(0220)e0=0,排除C;因为f(x)=(x22)ex,解f(x)0,所以或时f(x)单调递增,排除B,D故选A2函数y=x+cosx的大致图象是()ABCD【解答】解:由于f(x)=x+cosx,f(x)=x+cosx,f(x)f(x),且f(x)f(x),故此函数是非奇非偶函数,排除A、C;

    7、又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为 ,排除D故选:B3函数y=的图象大致是()ABCD【解答】解:当x0时,y=xlnx,y=1+lnx,即0x时,函数y单调递减,当x,函数y单调递增,因为函数y为偶函数,故选:D4函数y=xln|x|的大致图象是()ABCD【解答】解:令f(x)=xln|x|,易知f(x)=xln|x|=xln|x|=f(x),所以该函数是奇函数,排除选项B;又x0时,f(x)=xlnx,容易判断,当x+时,xlnx+,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x0时,函数图象与x轴只有一个交点,所以C选项满

    8、足题意故选:C5函数f(x)=x22|x|的图象大致是()ABCD【解答】解:函数f(x)=x22|x|,f(3)=98=10,故排除C,D,f(0)=1,f()=2=0.251,故排除A,故选:B当x0时,f(x)=x22x,f(x)=2x2xln2,故选:B6函数f(x)=+ln|x|的图象大致为()ABCD【解答】解:当x0时,函数f(x)=,由函数y=、y=ln(x)递减知函数f(x)=递减,排除CD;当x0时,函数f(x)=,此时,f(1)=1,而选项A的最小值为2,故可排除A,只有B正确,故选:B7在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()ABCD

    9、【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴0可排除B与D选项C,ab0,a0,1,则指数函数单调递增,故C不正确故选:A8函数y=xln|x|的图象大致是()ABCD【解答】解:函数f(x)=xln|x|,可得f(x)=f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x0时,f(x)0,故排除B又f(x)=lnx+1,令f(x)0得:x,得出函数f(x)在(,+)上是增函数,故选:C9f(x)=的部分图象大致是()ABCD【解答】解:f(x)=f(x)函数f(x)为奇函数,排除A,x(0,1)时,xsinx,x2+x20,故f(x)

    10、0,故排除B;当x+时,f(x)0,故排除C;故选:D10函数的图象大致为()ABCD【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e1,当x=e时,f(e)=,排除选项D故选:C11函数f(x)=(其中e为自然对数的底数)的图象大致为()ABCD【解答】解:f(x)=f(x),f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x0时,ex+12,x(ex1)0,+,排除C,故选A12函数f(x)=(2x2x)cosx在区间5,5上的图象大致为()ABCD【解答】解:当x0,5时,f(x)=(2x2x)cosx=0,可得函数的零点为:0,排除A,B,当x=时,f()=2

    11、+2,0,对应点在x轴下方,排除选项C,故选:D13函数的部分图象大致为()ABCD【解答】解:f(x)=f(x),可得f(x)为奇函数,排除B,1,排除A当x0时,在区间(1,+)上f(x)单调递增,排除D,故选C14函数f(x)=的部分图象大致为()ABCD【解答】解:函数f(x)=,当x=0时,可得f(0)=0,f(x)图象过原点,排除A当x0时;sin2x0,而|x+1|0,f(x)图象在上方,排除C当x1,x1时,sin(2)0,|x+1|0,那么f(x),当x=时,sin2x=,y=,对应点在第二象限,排除D,B满足题意故选:B15函数的部分图象大致为()ABCD【解答】解:f(x

    12、)=f(x),可得f(x)为奇函数,排除B,1,排除A当x0时,在区间(1,+)上f(x)单调递增,排除D,故选C16函数y=x(x21)的大致图象是()ABCD【解答】解:函数y=x(x21),令f(x)=x(x21),则f(x)=x(x21)=f(x),故函数f(x)为奇函数,又当0x1时,f(x)0,综上所述,函数y=x(x21)的大致图象是选项A故选:A17函数y=x2sinx,x,的大致图象是()ABCD【解答】解:f(x)=x+2sinx=(x2sinx)=f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y=12cosx,由y=0解得x=,当x=时,函数取极值,

    13、故D适合,故选:D18函数f(x)=的部分图象大致是()AB.C.D.【解答】解:由x2+|x|2=0,解得x=1或x=1,函数的定义域为(,1)(1,1)(1,+),f(x)=f(x),f(x)为奇函数,f(x)的图象关于原点对称,故排除A, 令f(x)=0,解得x=0,故排除C,当x=时,f()=0,故排除B,故选:D19函数y=2x2+2|x|在2,2的图象大致为()ABCD【解答】解:由y=2x2+2|x|知函数为偶函数,即其图象关于y轴对称,故可排除B,D又当x=2时,y=2(2)2+22=4所以,C是错误的,故选:A20函数的图象大致是()ABCD【解答】解:解:定义域为(,0)(

    14、0,+),f(x)=)=,f(x)=f(x),f(x)为偶函数,其图象关于y轴对称,可排除A、C,;又当x0时,cos(x)1,x20,f(x)故可排除B;而D均满足以上分析故选:D21函数f(x)=(x2,2)的大致图象是()ABCD【解答】解:函数f(x)=(x2,2)满足f(x)=f(x)是奇函数,排除D,x=1时,f(1)=0,对应点在第一象限,x=2时,f(2)=0,对应点在第四象限;所以排除B,C;故选:A22函数的图象大致是()ABCD【解答】解:函数满足f(x)=f(x),故函数图象关于原点对称,排除A、B,当x(0,)时,故排除D,故选:C23函数y=的大致图象是()ABCD

    15、【解答】解:函数y=的导数为,令y=0,得x=,时,y0,时,y0,时,y0函数在(),()递减,在()递增且x=0时,y=0,故选:C24函数y=sinx(1+cos2x)在区间2,2上的图象大致为()ABCD【解答】解:函数y=sinx(1+cos2x),定义域为2,2关于原点对称,且f(x)=sin(x)(1+cosx)=sinx(1+cosx)=f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0x1时,y=sinx(1+cos2x)=2sinxcos2x0,排除C;又2sinxcos2x=0,可得x=(0x2),则排除A,B正确故选B25函数f(x)=(x23)ln|x|的大

    16、致图象为()ABCD【解答】解:函数f(x)=(x23)ln|x|是偶函数;排除选项A,D;当x0时,f(x)+,排除选项B,故选:C26函数f(x)=eln|x|+x的大致图象为()ABCD【解答】解:函数f(x)=eln|x|+x是非奇非偶函数,排除A,D;当x0时,f(x)=elnx+x=x,函数是增函数,排除C;故选:B27函数y=1+x+的部分图象大致为()ABCD【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x0+,f(x)0,排除A、C,点x=时,y=1+,排除B故选:D28函数y=的部分图象

    17、大致为()ABCD【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()=,排除A,x=时,f()=0,排除D故选:C29函数f(x)=xln|x|的图象可能是()ABCD【解答】解:函数f(x)=xln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除 B;故选:D30函数f(x)=eln|x|+的大致图象为()ABCD【解答】解:f(x)=eln|x|+f(x)=eln|x|f(x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x0+时,y+,故排除B 故选:C31函数y=的一段大致图象

    18、是()ABCD【解答】解:f(x)=f(x),y=f(x)为奇函数,图象关于原点对称,当x=时,y=0,故选:A32函数的图象大致是()ABCD【解答】解:由题意,函数在(1,1)上单调递减,在(,1),(1,+)上单调递减,故选A33函数的大致图象是()ABCD【解答】解:f(x)=f(x),f(x)是奇函数,图象关于原点对称,故A,C错误;又当x1时,ln|x|=lnx0,f(x)0,故D错误,故选B34函数的图象大致为()ABCD【解答】解:f(x)=f(x),函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()=故选:D二解答题(共6小题)35在直角坐标系xOy中,以

    19、坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为cos=4(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求OAB面积的最大值【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,y0=,|OM|OP|=16,=16,即(x2+y2)(1+)=16,x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x2)2+y2=4(x0),点P的轨迹C2的直角坐标方程:(x2)2+y2=4(x

    20、0)(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,曲线C2的圆心(2,0)到弦OA的距离d=,AOB的最大面积S=|OA|(2+)=2+36在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4cos()说明C1是哪种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为=0,其中0满足tan0=2,若曲线C1与C2的公共点都在C3上,求a【解答】解:()由,得,两式平方相加得,x2+(y1)2=a2C1为以(0,1)为圆心,以a为半径的圆化为一般式:x2+y22y+1a2=0由x2+y2=2

    21、,y=sin,得22sin+1a2=0;()C2:=4cos,两边同时乘得2=4cos,x2+y2=4x,即(x2)2+y2=4由C3:=0,其中0满足tan0=2,得y=2x,曲线C1与C2的公共点都在C3上,y=2x为圆C1与C2的公共弦所在直线方程,得:4x2y+1a2=0,即为C3 ,1a2=0,a=1(a0)37在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin(+)=2(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标【解答】解:

    22、(1)曲线C1的参数方程为(为参数),移项后两边平方可得+y2=cos2+sin2=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为sin(+)=2,即有(sin+cos)=2,由x=cos,y=sin,可得x+y4=0,即有C2的直角坐标方程为直线x+y4=0;(2)由题意可得当直线x+y4=0的平行线与椭圆相切时,|PQ|取得最值设与直线x+y4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t23=0,由直线与椭圆相切,可得=36t216(3t23)=0,解得t=2,显然t=2时,|PQ|取得最小值,即有|PQ|=,此时4x212x+9=0,解得x=,即为P(,)另解:

    23、设P(cos,sin),由P到直线的距离为d=,当sin(+)=1时,|PQ|的最小值为,此时可取=,即有P(,)38在直角坐标系xOy中,曲线C的参数方程为,(为参数),直线l的参数方程为 ,(t为参数)(1)若a=1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a【解答】解:(1)曲线C的参数方程为(为参数),化为标准方程是:+y2=1;a=1时,直线l的参数方程化为一般方程是:x+4y3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(,)(2)l的参数方程(t为参数)化为一般方程是:x+4ya4=0,椭圆C上的任一点P可以表示成P(3cos,sin),0,2

    24、),所以点P到直线l的距离d为:d=,满足tan=,且的d的最大值为当a40时,即a4时,|5sin(+4)a4|5a4|=5+a+4=17解得a=84,符合题意当a40时,即a4时|5sin(+4)a4|5a4|=5a4=1a=17解得a=164,符合题意39在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数)设P为曲线C上的动点,求点P到直线l的距离的最小值【解答】解:直线l的直角坐标方程为x2y+8=0,P到直线l的距离d=,当s=时,d取得最小值=40在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数)设l1与l2的交点为P,当k变化时,P的轨迹为曲线C(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos+sin)=0,M为l3与C的交点,求M的极径【解答】解:(1)直线l1的参数方程为,(t为参数),消掉参数t得:直线l1的普通方程为:y=k(x2);又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=2+ky;联立,消去k得:x2y2=4,即C的普通方程为x2y2=4;(2)l3的极坐标方程为(cos+sin)=0,其普通方程为:x+y=0,联立得:,2=x2+y2=+=5l3与C的交点M的极径为=

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)函数图像问题高考试题精选.doc
    链接地址:https://www.163wenku.com/p-5515482.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库