(必考题)高中必修一数学上期末一模试题带答案(1).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(必考题)高中必修一数学上期末一模试题带答案(1).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必考题 考题 高中 必修 数学 上期 末一模 试题 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、【必考题】高中必修一数学上期末一模试题带答案(1)一、选择题1设均为正数,且,则( )ABCD2设,则的大小关系是( )A B C D 3若函数是R上的单调递增函数,则实数a的取值范围是( )AB(1,8)C(4,8)D4设f(x)若f(0)是f(x)的最小值,则a的取值范围为()A1,2B1,0C1,2D0,25用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似解可取为ABCD6设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内
2、关于的方程恰好有3个不同的实数根,则的取值范围是 ( )ABCD7已知,则方程根的个数为( )A1个B2个C3个D1个或2个或3根8已知函数,则的图象大致为( )ABCD9已知函数f(x)=x(ex+aex)(xR),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为( )A0B1C2D110下列函数中,既是偶函数又存在零点的是( )ABCD11已知全集U=1,2,3,4,5,6,集合P=1,3,5,Q=1,2,4,则=A1B3,5C1,2,4,6D1,2,3,4,512对任意实数,规定取,三个值中的最小值,则( )A无最大值,无最小值B有最大值2,最小值1C
3、有最大值1,无最小值D有最大值2,无最小值二、填空题13已知是定义域为R的单调函数,且对任意实数都有,则 =_.14已知函数,对任意的,总存在,使得,则实数的取值范围是_15已知函数,若对任意的均有,均有,则实数的取值范围是_16函数,其中,若动直线与函数的图像有三个不同的交点,则实数的取值范围是_.17对于函数,若存在定义域D内某个区间a,b,使得在a,b上的值域也为a,b,则称函数在定义域D上封闭,如果函数在R上封闭,则_18已知函数满足:,当时,则_.19若幂函数的图象经过点,则_.20已知函数为上的增函数,且对任意都有,则_.三、解答题21对于函数,总存在实数,使成立,则称为关于参数的
4、不动点(1)当,时,求关于参数的不动点;(2)若对任意实数,函数恒有关于参数两个不动点,求的取值范围;(3)当,时,函数在上存在两个关于参数的不动点,试求参数的取值范围22王久良导演的纪录片垃圾围城真实地反映了城市垃圾污染问题,目前中国668个城市中有超过的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:年份x2016201720182019包装垃圾y(万吨)46913.5(1)有下列函数模型:;.试从以上函数模型中,选择模型_(填模型序号),近似反映该城市近几年包装垃圾生产量y(万吨)与年份x的函数
5、关系,并直接写出所选函数模型解析式;(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:)23已知全集U=R,集合 ,(1)若,求;(2)若,求实数的取值范围24已知函数(,且),且.(1)若,求实数的取值范围;(2)若方程有两个解,求实数的取值范围.25已知,.(1)当时,证明:为单调递增函数;(2)当,且有最小值2时,求a的值.26某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份数,都是常数.结果4月,5月,6月份的患病人数分别为66,82,1
6、15,你认为谁选择的模型较好?【参考答案】*试卷处理标记,请不要删除一、选择题1A解析:A【解析】试题分析:在同一坐标系中分别画出,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出考点:指数函数、对数函数图象和性质的应用【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解2A解析:A【解析】【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】因为,令,函数图像如下图所示:则,所以当时, ,即 ,则,所以,即综上可知, 故选:A【点睛】本题
7、考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.3D解析:D【解析】【分析】根据分段函数单调性列不等式,解得结果.【详解】因为函数是R上的单调递增函数,所以故选:D【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4D解析:D【解析】【分析】由分段函数可得当时,由于是的最小值,则为减函数,即有,当时,在时取得最小值,则有,解不等式可得的取值范围.【详解】因为当x0时,f(x),f(0)是f(x)的最小值,所以a0.当x0时,当且仅当x1时取“”要满足f(0)是f(x)的最小值,需,即,解得,所以的取值范围是
8、,故选D.【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5C解析:C【解析】【分析】利用零点存在定理和精确度可判断出方程的近似解.【详解】根据表中数据可知,由精确度为可知,故方程的一个近似解为,选C.【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.6D解析:D【解析】对于任意的xR,都有f(x2)=f(2+x),函数f(x)是一个周
9、期函数,且T=4.又当x2,0时,f(x)=1,且函数f(x)是定义在R上的偶函数,若在区间(2,6内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(2,6上有三个不同的交点,如下图所示:又f(2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即3,由此解得:a2,故答案为(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解7B解析:B【解析】【分析】在同一平面直角坐标系中作出与的图象,图象的交点数目即为方程根的个数.【详解】作出,图象如下图:由图象可知:有两个交点,
10、所以方程根的个数为.故选:B.【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数的零点数方程根的个数与图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.8C解析:C【解析】【分析】【详解】因为函数,可得是偶函数,图象关于 轴对称,排除 ;又时,,所以,排除 ,故选C.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点
11、以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9B解析:B【解析】试题分析:利用函数f(x)=x(ex+aex)是偶函数,得到g(x)=ex+aex为奇函数,然后利用g(0)=0,可以解得m函数f(x)=x(ex+aex)是奇函数,所以g(x)=ex+aex为偶函数,可得n,即可得出结论解:设g(x)=ex+aex,因为函数f(x)=x(ex+aex)是偶函数,所以g(x)=ex+aex为奇函数又因为函数f(x)的定义域为R,所以g(0)=0,即g(0)=1+a=0,解得a=1,所以m=1因为函数f(x)=x(ex+aex)是奇函数,所以g(x)=ex+aex为偶函数所以(e
展开阅读全文