2019年全国各地中考数学试题分类汇编:勾股定理.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年全国各地中考数学试题分类汇编:勾股定理.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 全国各地 中考 数学试题 分类 汇编 勾股定理 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、数学精品复习资料(2013湘西州)如图,RtABC中,C=90,AD平分CAB,DEAB于E,若AC=6,BC=8,CD=3(1)求DE的长;(2)求ADB的面积考点:角平分线的性质;勾股定理分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算ADB的面积解答:解:(1)AD平分CAB,DEAB,C=90,CD=DE,CD=3,DE=3;(2)在RtABC中,由勾股定理得:AB=10,ADB的面积为SADB=ABDE=103=15点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等(2013株洲)已知四边形ABCD是
2、边长为2的菱形,BAD=60,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F(1)求证:AOECOF;(2)若EOD=30,求CE的长考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理3718684分析:(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得ADBC,再利用两直线平行,内错角相等可得OAE=OCF,然后利用“角边角”证明AOE和COF全等;(2)根据菱形的对角线平分一组对角求出DAO=30,然后求出AEF=90,然后求出AO的长,再求出EF的长,然后在RtCEF中,利用勾股定理列式计算即可得解解答:(1)
3、证明:四边形ABCD是菱形,AO=CO,ADBC,OAE=OCF,在AOE和COF中,AOECOF(ASA);(2)解:BAD=60,DAO=BAD=60=30,EOD=30,AOE=9030=60,AEF=180BODAOE=1803060=90,菱形的边长为2,DAO=30,OD=AD=2=1,AO=,AE=CF=,菱形的边长为2,BAD=60,高EF=2=,在RtCEF中,CE=点评:本题考查了菱形的性质,全等三角形的判定与性质,直角三角形30角所对的直角边等于斜边的一半的性质,勾股定理的应用,(2)求出CEF是直角三角形是解题的关键,也是难点(2013巴中)若直角三角形的两直角边长为a
4、、b,且满足,则该直角三角形的斜边长为5考点:勾股定理;非负数的性质:绝对值;非负数的性质:算术平方根245761 分析:根据非负数的性质求得a、b的值,然后利用勾股定理即可求得该直角三角形的斜边长解答:解:,a26a+9=0,b4=0,解得a=3,b=4,直角三角形的两直角边长为a、b,该直角三角形的斜边长=5故答案是:5(2013达州)如图,在RtABC中,B=90,AB=3,BC=4,点D在BC上,以AC为对角线的所有ADCE中,DE最小的值是( )A2 B3C4 D5答案:B解析:由勾股定理,得AC5,因为平行边形的对角线互相平分,所以,DE一定经过AC中点O,当DEBC时,DE最小,
5、此时OD,所以最小值DE3(2013达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10。设AE=x,则x 的取值范围是.答案:2x6解析:如图,设AGy,则BG6y,在RtGAE中,x2y2(6y)2,即(,当y0时,x取最大值为6;当y时,x取最小值2,故有2x62013雅安)在平面直角坐标系中,已知点A(,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,2),(3,0),(3,0)考点:勾股定理;坐标与图形性质专题:分类讨论分析:需要分类讨论:当点C位于x轴上时,根据
6、线段间的和差关系即可求得点C的坐标;当点C位于y轴上时,根据勾股定理求点C的坐标解答:解:如图,当点C位于y轴上时,设C(0,b)则+=6,解得,b=2或b=2,此时C(0,2),或C(0,2)如图,当点C位于x轴上时,设C(a,0)则|a|+|a|=6,即2a=6或2a=6,解得a=3或a=3,此时C(3,0),或C(3,0)综上所述,点C的坐标是:(0,2),(0,2),(3,0),(3,0)故答案是:(0,2),(0,2),(3,0),(3,0)点评:本题考查了勾股定理、坐标与图形的性质解题时,要分类讨论,以防漏解另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标图1(20
7、13资阳)如图1,点E在正方形ABCD内,满足,AE=6,BE=8,则阴影部分的面积是 CABCD80(2013鞍山)ABC中,C=90,AB=8,cosA=,则BC的长 考点:锐角三角函数的定义;勾股定理分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长解答:解:cosA=,AC=ABcosA=8=6,BC=2故答案是:2点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边(2013鞍山)如图,D是ABC内一点,BDCD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边
8、形EFGH的周长是 考点:三角形中位线定理;勾股定理分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解解答:解:BDCD,BD=4,CD=3,BC=5,E、F、G、H分别是AB、AC、CD、BD的中点,EH=FG=AD,EF=GH=BC,四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又AD=6,四边形EFGH的周长=6+5=11故答案为:11点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键(2013鄂州)如图,已
9、知直线ab,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=试在直线a上找一点M,在直线b上找一点N,满足MNa且AM+MN+NB的长度和最短,则此时AM+NB=()A6B8C10D12考点:勾股定理的应用;线段的性质:两点之间线段最短;平行线之间的距离分析:MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A,连接AB交直线b与点N,过点N作NM直线a,连接AM,则可判断四边形AANM是平行四边形,得出AM=AN,由两点之间线段最短,可得此时AM+NB的值最小过点B作BEAA,交AA于点E,在RtABE中求出BE,
展开阅读全文