2019年全国各地中考数学试题分类汇编(第一期)-专题35-尺规作图(含解析).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年全国各地中考数学试题分类汇编(第一期)-专题35-尺规作图(含解析).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 全国各地 中考 数学试题 分类 汇编 第一 专题 35 作图 解析 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、尺规作图一.选择题1. (2019湖南长沙3分)如图,RtABC中,C90,B30,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则CAD的度数是()A20B30C45D60【分析】根据内角和定理求得BAC60,由中垂线性质知DADB,即DABB30,从而得出答案【解答】解:在ABC中,B30,C90,BAC180BC60,由作图可知MN为AB的中垂线,DADB,DABB30,CADBACDAB30,故选:B【点评】本题主要考查作图基本作图,熟练掌握中垂线的作图和性质是解题的关键2. (2019广东深圳3分)如图,已知AB=AC,AB
2、=5,BC=3,以AB两点为圆心,大于AB的长为半径画圆,两弧相交于点M,N,连接MN与AC相较于点D,则BDC的周长为( )A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN是线段AB的垂直平分线,则AD=BD,又因为AB=AC=5,BC=3,所以BDC的周长为8.二.填空题1. .( 2019甘肃省兰州市) 如图, 矩形ABCD, BAC600. 以点A为圆心,以任意长为半径作弧分别交AB.AC于点M、N两点,再分别以点M、N 为圆心,以大于MN的长为半径作弧交于点P ,作射线AP交BC于点E,若BE1,则矩形ABCD的面积等于_.【答案】3【考点】尺规作图,矩形的性
3、质. 【考察能力】基础运算能力,空间想象能力,推理论证能力.【难度】难.【解析】 由题可知AP是BAC的角平分线BAC600BAEEAC300AE2 BE2.ABAEB600又AEBEAC+ECAEACECA300AEEC2BC3S矩形ABCD32. (2019,四川成都,4分)如图,ABCD的对角线AC与BD相交于点O,按以下步骤作图:以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;以点O为圆心,以AM长为半径作弧,交OC于点;以点为圆心,以MN长为半径作弧,在COB内部交前面的弧于点;过点作射线交BC于点E,若AB=8,则线段OE的长为 .【解析】此题考察的是通过尺规作图构造
4、全等三角形的原理及两直线平行的判定,连接和,因为,所以,所以,所以,又因为是中点,所以是的中位线,所以,所以.3. 三.解答题1. (2019广东6分)如图,在ABC中,点D是AB边上的一点(1)请用尺规作图法,在ABC内,求作ADE使ADE=B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值【答案】解:(1)如图所示,ADE为所求.(2)ADE=BDEBC=2=2【考点】尺规作图之作一个角等于已知角,平行线分线段成比例2. (2019甘肃4分)如图,在ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的
5、距离相等(不写作法,保留作图痕迹)【分析】根据角平分线的作法、线段垂直平分线的作法作图即可【解答】解:如图,点M即为所求,【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本尺规作图的一般步骤是解题的关键3. (2019广西贵港5分)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC,请根据“SAS”基本事实作出DEF,使DEFABC【分析】先作一个DA,然后在D的两边分别截取EDBA,DFAC,连接EF即可得到DEF;【解答】解:如图,DEF即为所求【点评】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图
6、方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了全等三角形的判定4. (2019湖北孝感8分)如图,RtABC中,ACB90,一同学利用直尺和圆规完成如下操作:以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD
7、CE;(2)过点D作DFAB交AB的延长线于点F,若AC12,BC5,求tanDBF的值【分析】(1)由作图知CEAB,BD平分CBF,据此得123,结合CEB+32+CDE90知CEBCDE,从而得出答案;(2)证BCDBFD得CDDF,从而设CDDFx,求出AB13,知sinDAF,即,解之求得x,结合BCBF5可得答案【解答】解:(1)CDCE,由作图知CEAB,BD平分CBF,123,CEB+32+CDE90,CEBCDE,CDCE,故答案为:CDCE;(2)BD平分CBF,BCCD,BFDF,BCBF,CBDFBD,在BCD和BFD中,BCDBFD(AAS),CDDF,设CDDFx,
8、在RtACB中,AB13,sinDAF,即,解得x,BCBF5,tanDBF【点评】本题主要考查作图复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线和角平分线的尺规作图及全等三角形的判定与性质等知识点5.(2019,山东枣庄,8分)如图,BD是菱形ABCD的对角线,CBD75,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求DBF的度数【分析】(1)分别以A.B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据DBFABDABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)四
9、边形ABCD是菱形,ABDDBCABC75,DCAB,ACABC150,ABC+C180,CA30,EF垂直平分线段AB,AFFB,AFBA30,DBFABDFBE45【点评】本题考查作图基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型6. (2019安徽)(8分)如图,在边长为1个单位长度的小正方形组成的1212的网格中,给出了以格点(网格线的交点)为端点的线段AB(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点(作出一个菱形即可)【分析】(1)
10、直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键7. (2019江苏泰州8分)如图,ABC中,C90,AC4,BC8(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长【分析】(1)分别以A,B为圆心,大于AB为半径画弧,两弧交于点M,N,作直线MN即可(2)设ADBDx,在RtACD中,利用勾股定理构建方程即可解决
11、问题【解答】解:(1)如图直线MN即为所求(2)MN垂直平分线段AB,DADB,设DADBx,在RtACD中,AD2AC2+CD2,x242+(8x)2,解得x5,BD5【点评】本题考查作图基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8.(2019广西池河8分)如图,AB为O的直径,点C在O上(1)尺规作图:作BAC的平分线,与O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论【分析】(1)利用基本作图作AD平分BAC,然后连接OD得到点E;(2)由AD平分
12、BAC得到BADBAC,由圆周角定理得到BADBOD,则BODBAC,再证明OE为ABC的中位线,从而得到OEAC,OEAC【解答】解:(1)如图所示;(2)OEAC,OEAC理由如下:AD平分BAC,BADBAC,BADBOD,BODBAC,OEAC,OAOB,OE为ABC的中位线,OEAC,OEAC【点评】本题考查了作图基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)也考查了圆周角定理 9(2019甘肃省陇南市)(8分)已知:在ABC中,ABAC(1)求作:ABC的外接圆(要求:尺规作图,保留作图痕
13、迹,不写作法)(2)若ABC的外接圆的圆心O到BC边的距离为4,BC6,则SO25【分析】(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作O,O即为所求(2)在RtOBE中,利用勾股定理求出OB即可解决问题【解答】解:(1)如图O即为所求(2)设线段BC的垂直平分线交BC于点E由题意OE4,BEEC3,在RtOBE中,OB5,S圆O5225故答案为25【点评】本题考查作图复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型10. (2019山东省济宁市 7分)如图,点M和点N在AOB内部(1)请你作出点P,使点P到点M
14、和点N的距离相等,且到AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由【考点】基本作图【分析】(1)根据角平分线的作法、线段垂直平分线的作法作图;(2)根据角平分线的性质、线段垂直平分线的性质解答【解答】解:(1)如图,点P到点M和点N的距离相等,且到AOB两边的距离也相等;(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本作图的一般步骤、角平分线的性质、线段垂直平分线的性质是解题的关键2019年各区一模尺规作图分类类型1:作已知直线的平行线1下面是小明设计的“
15、过直线外一点作这条直线的平行线”的尺规作图过程(2019东城一模)已知:如图,直线BC及直线BC外一点P求作:直线PE,使得PEBC作法:如图,在直线BC上取一点A,连接PA;作PAC的平分线AD;以点P为圆心,PA长为半径画弧,交射线AD于点E;作直线PE所以直线PE就是所求作的直线根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:AD平分PAC,PAD=CADPA=PE,PAD=_PEA=_PEBC(_)(填推理的依据)答案:17.(1); -2分(2)PEA,CAD,内错角相等,两直线平行-5分2下面是小明设计的“过直线外一点作已知直线
16、的平行线”的尺规作图过程已知:直线l及直线l外一点P求作:直线PQ,使PQl作法:如图, 在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点; 连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q; 作直线PQ所以直线PQ就是所求作的直线根据小明设计的尺规作图过程,(2019海淀一模)(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接PB,QB, PA=QB, _, PBA=QPB(_)(填推理的依据), PQl(_)(填推理的依据)答案:(1)补全的图形如图所示:(2), 等弧所对的圆周角相等, 内错角相等,两直线平行 3已知:如图1,在A
17、BC中,ACB90.求作:射线CG,使得CGAB(2019通州一模)图1 图2下面是小东设计的尺规作图过程作法:如,2,以点A为圆心,适当长为半径作弧,分别交AC,AB于D,E两点;以点C为圆心,AD长为半径作弧,交AC的延长线于点F;以点F为圆心,DE长为半径作弧,两弧在FCB内部交于点G;作射线CG所以射线CG就是所求作的射线根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接FG、DE.ADE _,DAE = _CGAB(_)(填推理的依据)答案: 1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)ADE CFG, DAE = FC
展开阅读全文