2019年中考数学试题汇编二次函数填空题(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年中考数学试题汇编二次函数填空题(解析版).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年中 数学试题 汇编 二次 函数 填空 解析 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、1.(2019年内蒙古赤峰市)二次函数yax2+bx+c(a0)的图象如图所示,下列结论:b0;ab+c0;一元二次方程ax2+bx+c+10(a0)有两个不相等的实数根;当x1或x3时,y0上述结论中正确的是(填上所有正确结论的序号)【分析】由图可知,对称轴x1,与x轴的一个交点为(3,0),则有b2a,与x轴另一个交点(1,0);由a0,得b0;当x1时,y0,则有ab+c0;一元二次方程ax2+bx+c+10可以看作函数yax2+bx+c与y1的交点,由图象可知函数yax2+bx+c与y1有两个不同的交点,一元二次方程ax2+bx+c+10(a0)有两个不相等的实数根;由图象可知,y0时
2、,x1或x3【解答】解:由图可知,对称轴x1,与x轴的一个交点为(3,0),b2a,与x轴另一个交点(1,0),a0,b0;错误;当x1时,y0,ab+c0;正确;一元二次方程ax2+bx+c+10可以看作函数yax2+bx+c与y1的交点,由图象可知函数yax2+bx+c与y1有两个不同的交点,一元二次方程ax2+bx+c+10(a0)有两个不相等的实数根;正确;由图象可知,y0时,x1或x3正确;故答案为【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,能够从图象中获取信息进行准确的分析是解题的关键2.(2019年吉林省长春市)如图,在平面直角坐标系中,抛物线yax22a
3、x+(a0)与y轴交于点A,过点A作x轴的平行线交抛物线于点MP为抛物线的顶点若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为2【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP的解析式,再将点B坐标代入即可求解出a的值【解答】解:抛物线yax22ax+(a0)与y轴交于点A,A(0,),抛物线的对称轴为x1顶点P坐标为(1,a),点M坐标为(2,)点M为线段AB的中点,点B坐标为(4,)设直线OP解析式为ykx(k为常数,且k0)将点P(1,)代入得ky()x将点B(4,)代入
4、得()4解得a2故答案为:2【点评】本题综合考查了如何求抛物线与y轴的交点坐标,如何求抛物线的对称轴,以及利用对称性求抛物线上点的坐标,同时还考查了正比例函数解析式的求法,难度中等3.(2019年黑龙江省哈尔滨市)二次函数y(x6)2+8的最大值是8【分析】利用二次函数的性质解决问题【解答】解:a10,y有最大值,当x6时,y有最大值8故答案为8【点评】本题主要考查二次函数的最值,熟练掌握二次函数的图象和性质是解题的关键4.(2019年湖北省荆州市)二次函数y2x24x+5的最大值是7【分析】直接利用配方法得出二次函数的顶点式进而得出答案【解答】解:y2x24x+52(x+1)2+7,即二次函
5、数yx24x+5的最大值是7,故答案为:7【点评】此题主要考查了二次函数的最值,正确配方是解题关键5.(2019年江苏省镇江市)已知抛物线yax2+4ax+4a+1(a0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是【分析】根据题意得4a+13,解不等式求得a,把x代入代数式即可求得【解答】解:抛物线yax2+4ax+4a+1(a0)过点A(m,3),B(n,3)两点,2线段AB的长不大于4,4a+13aa2+a+1的最小值为:()2+1;故答案为【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据题意得出4a+13是解题的关键6.(
6、2019年四川省广元市)如图,抛物线yax2+bx+c(a0)过点(1,0),(0,2),且顶点在第一象限,设M4a+2b+c,则M的取值范围是6M6【分析】将(1,0)与(0,2)代入yax2+bx+c,可知ba+2,利用对称轴可知:a2,从而可知M的取值范围【解答】解:将(1,0)与(0,2)代入yax2+bx+c,0ab+c,2c,ba+2,0,a0,b0,a2,2a0,M4a+2(a+2)+26a+66(a+1)6M6,故答案为:6M6;【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型7.(2019年湖北省江汉油田)矩形的周长等于40,则此矩形面积的
7、最大值是100【分析】设矩形的宽为x,则长为(20x),Sx(20x)x2+20x(x10)2+100,当x10时,S最大值为100【解答】解:设矩形的宽为x,则长为(20x),Sx(20x)x2+20x(x10)2+100,当x10时,S最大值为100故答案为100【点评】本题考查了函数的最值,熟练运用配方法是解题的关键8.(2019年广西贺州市)已知抛物线yax2+bx+c(a0)的对称轴是直线x1,其部分图象如图所示,下列说法中:abc0;ab+c0;3a+c0;当1x3时,y0,正确的是(填写序号)【分析】首先根据二次函数图象开口方向可得a0,根据图象与y轴交点可得c0,再根据二次函数
8、的对称轴x1,结合a的取值可判定出b0,根据a、b、c的正负即可判断出的正误;把x1代入函数关系式yax2+bx+c中得yab+c,再根据对称性判断出的正误;把b2a代入ab+c中即可判断出的正误;利用图象可以直接看出的正误【解答】解:根据图象可得:a0,c0,对称轴:x1,b2a,a0,b0,abc0,故正确;把x1代入函数关系式yax2+bx+c中得:yab+c,由抛物线的对称轴是直线x1,且过点(3,0),可得当x1时,y0,ab+c0,故错误;b2a,a(2a)+c0,即:3a+c0,故正确;由图形可以直接看出正确故答案为:【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握
9、二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左侧; 当a与b异号时(即ab0),对称轴在y轴右侧(简称:左同右异);常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)9.(2019年广东省广州市)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),DAM45,点F在射线AM上,且AFBE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:ECF45;AEG的周长为(1+)a;BE2+DG2EG2;EAF的面积的最大值a2其中正确的结论
10、是(填写所有正确结论的序号)【分析】正确如图1中,在BC上截取BHBE,连接EH证明FAEEHC(SAS),即可解决问题错误如图2中,延长AD到H,使得DHBE,则CBECDH(SAS),再证明GCEGCH(SAS),即可解决问题正确设BEx,则AEax,AFx,构建二次函数,利用二次函数的性质解决最值问题【解答】解:如图1中,在BC上截取BHBE,连接EHBEBH,EBH90,EHBE,AFBE,AFEH,DAMEHB45,BAD90,FAEEHC135,BABC,BEBH,AEHC,FAEEHC(SAS),EFEC,AEFECH,ECH+CEB90,AEF+CEB90,FEC90,ECFE
11、FC45,故正确,如图2中,延长AD到H,使得DHBE,则CBECDH(SAS),ECBDCH,ECHBCD90,ECGGCH45,CGCG,CECH,GCEGCH(SAS),EGGH,GHDG+DH,DHBE,EGBE+DG,故错误,AEG的周长AE+EG+AGAG+GHAD+DH+AEAE+EB+ADAB+AD2a,故错误,设BEx,则AEax,AFx,SAEF(ax)xx2+ax(x2ax+a2a2)(xa)2+a2,0,xa时,AEF的面积的最大值为a2故正确,故答案为【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三
12、角形解决问题,属于中考填空题中的压轴题10.(2019年湖北省荆门市)抛物线yax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(1,0),B(m,0),C(2,n)(1m3,n0),下列结论:abc0,3a+c0,a(m1)+2b0,a1时,存在点P使PAB为直角三角形其中正确结论的序号为【分析】由已知可以确定a0,b0,cba0;abc0;当x3时,y0,即9a+3b+c9a+3(a+c)+c12a+4c4(3a+c)0;a(m1)+2bb+2bb0;a1时,P(,b+1+),则PAB为等腰直角三角形,b+1+1,求出k2不合题意;【解答】解:将A(1,0),B(m,0),C
13、(2,n)代入解析式yax2+bx+c,对称轴x,m1,1m3,ab0,n0,a0,b0,ab+c0,cba0abc0;错误;当x3时,y0,9a+3b+c9a+3(a+c)+c12a+4c4(3a+c)0,正确;a(m1)+2bb+2bb0,正确;a1时,yx2+bx+c,P(,b+1+),若PAB为直角三角形,则PAB为等腰直角三角形,AP的直线解析式的k1,b+1+1,b2,b0,不存在点P使PAB为直角三角形错误;故答案为;【点评】本题考查二次函数的图象及性质;能够熟练掌握二次函数的图象,根据给出的点判断函数系数a,b,c的取值情况是解题的关键11.(2019年湖南省株洲市)若二次函数
14、yax2+bx的图象开口向下,则a0(填“”或“”或“”)【分析】由二次函数yax2+bx图象的开口向下,可得a0【解答】解:二次函数yax2+bx的图象开口向下,a0故答案是:【点评】考查了二次函数图象与系数的关系二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小12.(2019年湖北省武汉市)抛物线yax2+bx+c经过点A(3,0)、B(4,0)两点,则关于x的一元二次方程a(x1)2+cbbx的解是x12,x25【分析】由于抛物线yax2+bx+c沿x轴向右平移1个单位得到ya(x1)2+b(x1)+
15、c,从而得到抛物线ya(x1)2+b(x1)+c与x轴的两交点坐标为(2,0),(5,0),然后根据抛物线与x轴的交点问题得到一元二方程a(x1)2+b(x1)+c0的解【解答】解:关于x的一元二次方程a(x1)2+cbbx变形为a(x1)2+b(x1)+c0,把抛物线yax2+bx+c沿x轴向右平移1个单位得到ya(x1)2+b(x1)+c,因为抛物线yax2+bx+c经过点A(3,0)、B(4,0),所以抛物线ya(x1)2+b(x1)+c与x轴的两交点坐标为(2,0),(5,0),所以一元二方程a(x1)2+b(x1)+c0的解为x12,x25故答案为x12,x25【点评】本题考查了抛物
16、线与x轴的交点:把求二次函数yax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质13.(2019年江苏省无锡市)某个函数具有性质:当x0时,y随x的增大而增大,这个函数的表达式可以是yx2(答案不唯一)(只要写出一个符合题意的答案即可)【分析】根据函数的性质写出一个反比例函数或二次函数为佳【解答】解:yx2中开口向上,对称轴为x0,当x0时y随着x的增大而增大,故答案为:yx2(答案不唯一)【点评】考查了一次函数、二次函数、反比例函数的性质,根据函数的增减性写出答案即可14.(2019年四川省遂宁市)如图,在平面直角坐标系中,矩形O
展开阅读全文