2020年中考数学试题分类汇编之十-相似三角形-含解析.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年中考数学试题分类汇编之十-相似三角形-含解析.docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年中 数学试题 分类 汇编 相似 三角形 解析 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、2020年中考数学试题分类汇编之十相似三角形一、 选择题1(2020成都)(3分)如图,直线,直线和被,所截,则的长为A2B3C4D解:直线,选:2(2020哈尔滨)(3分)如图,在中,点在边上,连接,点在边上,过点作,交于点,过点作,交于点,则下列式子一定正确的是ABCD解:,故选:3.(2020河北)在如图所示的网格中,以点为位似中心,四边形的位似图形是( )A. 四边形B. 四边形C. 四边形D. 四边形解:如图所示,四边形的位似图形是四边形故选:A4.(2020四川绵阳)如图,在四边形ABCD中,ADBC,ABC90,AB2,AD2,将ABC绕点C顺时针方向旋转后得ABC,当AB恰好经
2、过点D时,BCD为等腰三角形,若BB2,则AA()AB2CD解:过D作DEBC于E,则DECDEB90,ADBC,ABC90,DABABC90,四边形ABED是矩形,BEAD2,DEAB2,将ABC绕点C顺时针方向旋转后得ABC,DBCABC90,BCBC,ACAC,ACABCB,ACABCB,BCD为等腰三角形,BCD为等腰直角三角形,CDBC,设BCBCx,则CDx,CEx2,CD2CE2+DE2,(x)2(x2)2+(2)2,x4(负值舍去),BC4,AC2,AA,故选:A5.(2020无锡)如图,等边的边长为3,点在边上,线段在边上运动,有下列结论:与可能相等;与可能相似;四边形面积的
3、最大值为;四边形周长的最小值为其中,正确结论的序号为( )A. B. C. D. 解:线段在边上运动,,与不可能相等,则错误;设,即,假设与相似,A=B=60,即,从而得到,解得或(经检验是原方程的根),又,解得的或符合题意,即与可能相似,则正确;如图,过P作PEBC于E,过F作DFAB于F,设,由,得,即,B=60,A =60,,则,四边形面积为:,又,当时,四边形面积最大,最大值为:,即四边形面积最大值为,则正确;如图,作点D关于直线的对称点D1,连接D D1,与相交于点Q,再将D1Q沿着向B端平移个单位长度,即平移个单位长度,得到D2P,与相交于点P,连接PC,D1Q=DQ=D2P,且A
4、D1D2=120,此时四边形的周长为:,其值最小,D1AD2=30,D2A D=90,根据股股定理可得,四边形的周长为:,则错误,所以可得正确,故选:D6.(2020重庆A卷)如图,在平面直角坐标系中,的顶点坐标分别是,以原点为位似中心,在原点的同侧画,使与成位似图形,且相似比为2:1,则线段DF的长度为( )A. B. 2C. 4D. 解:以原点为位似中心,在原点的同侧画DEF,使DEF与ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),D(2,4),F(6,2),DF=,故选:D7.(2020重庆B卷)如图,ABC与DEF位似,点O为位似中心.已知OAOD=12,则ABC与
5、DEF的面积比为( )A. 12 B. 13 C. 14 D.15.答案C.8.(2020甘肃定西)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感.若图中为2米,则约为( )A.1.24米B.1.38米C.1.42米D.1.62米答案:A9(2020四川遂宁)(4分)如图,在平行四边形ABCD中,ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF2FD,则BEEG的值为()A12B13C23D34解:由AF2DF,可以假设DFk,则AF2k,AD3k,四边形ABCD是平行四边形,ADBC,ABCD,ABC
6、D,AFBFBCDFG,ABFG,BE平分ABC,ABFCBG,ABFAFBDFGG,ABCD2k,DFDGk,CGCD+DG3k,ABDG,ABECGE,BEEG=ABCG=2k3k=23,故选:C10(2020广西南宁)(3分)如图,在ABC中,BC120,高AD60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A15B20C25D30解:设正方形EFGH的边长EFEHx,四边EFGH是正方形,HEFEHG90,EFBC,AEFABC,AD是ABC的高,HDN90,四边形EHDN是矩形,DNEHx,AEFABC,(相似三角形对应边上的高的比等于
7、相似比),BC120,AD60,AN60x,解得:x40,AN60x604020 故选:B11(2020广西玉林)(3分)(2020玉林)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A一种B两种C三种D四种解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120c
8、m,当长60cm的木条与100cm的一边对应,则x75=y120=60100,解得:x45,y72;当长60cm的木条与120cm的一边对应,则x75=y100=60120,解得:x37.5,y50答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段故选:B12(2020贵州遵义)(4分)如图,ABO的顶点A在函数y=kx(x0)的图象上,ABO90,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q若四边形MNQP的面积为3,则k的值为()A9B12C15D18解:NQMPOB,ANQAMPAOB,M、N是OA的三等分点
9、,ANAM=12,ANAO=13,SANQSAMP=14,四边形MNQP的面积为3,SANQ3+SANQ=14,SANQ1,1SAOB=(ANAO)2=19, SAOB9,k2SAOB18, 故选:D13(3分)(2020荆门)ABC中,ABAC,BAC120,BC23,D为BC的中点,AE=14AB,则EBD的面积为()A334B338C34D38解:连接AD,作EFBC于F,ABAC,BAC120,D为BC的中点,ADBC,AD平分BAC,BC30在RtABD中,BD=12BC=3,B30,AB=BDcos30=332=2,AD=12AB=1,AE=14AB,BEAB=34,EFBC,AD
10、BC,EFAD,BEFBAD,EFAD=BEAB,EF1=34EF=34,SBDE=12BDEF=12334=338,选:B14(2020山西)(3分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A图形的平移B图形的旋转C图形的轴对称D图形的相似选:D15(2020浙江温州)(4分)如图,在RtABC中,ACB90,以其三边为边向外作正方形,过点C作CRFG于点R,再过点C作PQCR分别交边DE,BH于点P,Q若QH2PE,PQ15,则CR的长为()A14B1
11、5C83D65解:如图,连接EC,CH设AB交CR于J四边形ACDE,四边形BCJHD都是正方形,ACEBCH45,ACB90,BCI90,ACE+ACB+BCH180,ACB+BCI90B,C,H共线,A,C,I共线,DEAIBH,CEPCHQ,ECPQCH,ECPHCQ,PCCQ=CECH=EPHQ=12,PQ15,PC5,CQ10,EC:CH1:2,AC:BC1:2,设ACa,BC2a,PQCRCRAB,CQAB,ACBQ,CQAB,四边形ABQC是平行四边形,ABCQ10,AC2+BC2AB2,5a2100,a22(负根已经舍弃),AC25,BC45,12ACBC=12ABCJ,CJ=
12、254510=4,JRAFAB10,CRCJ+JR14,故选:A16(2020海南)(3分)如图,在矩形ABCD中,AB6,BC10,点E、F在AD边上,BF和CE交于点G,若EFAD,则图中阴影部分的面积为()A25B30C35D40解:过点G作GNAD于N,延长NG交BC于M,四边形ABCD是矩形,ADBC,ADBC,EFAD,EFBC,ADBC,NGAD,EFGCBG,GMBC,GN:GMEF:BC1:2,又MNBC6,GN2,GM4,SBCG10420,SEFG525,S矩形ABCD61060,S阴影6020535故选:C二、 填空题17(2020广州)如图7,正方形ABCD中,ABC
13、绕点A逆时针旋转到,分别交对角线BD于点E,F,若,则的值为 * 【答案】16. 提示:由EAFEDA,得到:,所以:,=1618.(2020河南)如图,在边长为的正方形中,点分别是边的中点,连接点分别是的中点,连接,则的长度为_【答案】1【详解】过E作,过G作,过H作,垂足分别为P,R,R,与相交于I,如图,四边形ABCD是正方形,四边形AEPD是矩形,点E,F分别是AB,BC边的中点, ,点G是EC的中点,是的中位线,同理可求:,由作图可知四边形HIQP是矩形,又HP=FC,HI=HR=PC,而FC=PC, ,四边形HIQP是正方形, 是等腰直角三角形,故答案为:119.(2020苏州).
14、如图,在平面直角坐标系中,点、的坐标分别为、,点在第一象限内,连接、已知,则_【答案】解:如图,过点C作CDy轴,交y轴于点D,则CDAO,DCECAO,BCA2CAO,BCA2DCE,DCEDCB,CDy轴,CDECDB90,又CDCD,CDECDB(ASA),DEDB,B(0,4),C(3,n),CD3,ODn,OB4,DEDBOBOD4n,OEODDEn(4n)2n4,A(4,0),AO4,CDAO,AOECDE, ,解得:,故答案:20.(2020乐山)把两个含角的直角三角板按如图所示拼接在一起,点为的中点,连结交于点则=_解:连接CE,设CD=2x,在RtACD和RtABC中,BAC
15、=CAD=30,D=60,AD=4x,AC=,BC=x,AB=x,点E为AD的中点,CE=AE=DE=2x,CED为等边三角形,CED=60,BAD=BAE+CAD=30+30=60,CED=BAD,ABCE,在BAE中,BAE=CAD=30AF平分BAE, , 故答案为:.21.(2020无锡)如图,在中,点,分别在边,上,且,连接,相交于点,则面积最大值为_解:如图1,作DGAC,交BE于点G, , AB=4 若面积最大,则面积最大,如图2,当点ABC为等腰直角三角形时,面积最大,为, 面积最大值为 +故答案为:22(2020上海)(4分)九章算术中记载了一种测量井深的方法如图所示,在井口
16、B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB1.6米,BD1米,BE0.2米,那么井深AC为7米解:BDAB,ACAB,BDAC,ACEDBE,ACBD=AEBE,AC1=1.40.2,AC7(米),答:井深AC为7米23(2020吉林)(3分)如图,ABCDEF若,BD5,则DF10解:ABCDEF, ,DF2BD2510 故答案为10 24(2020吉林)(3分)如图,在ABC中,D,E分别是边AB,AC的中点若ADE的面积为,则四边形DBCE的面积为解:D,E分别是ABC的边AB,AC的中点, DE是ABC的中位线,DEBC
17、,DEBC, ADEABC,()2()2,ADE的面积为, ABC的面积为2,四边形DBCE的面积2, 故答案为:25(2020黑龙江牡丹江)(3分)如图,在中,点在边上将沿直线翻折,点落在点处,连接,交于点若,则【解答】解:,设,则,由于折叠,且,即为等腰直角三角形,故答案为:26(2020黑龙江牡丹江)(3分)如图,在中,是的中点,点在上,垂足分别为,连接则下列结论中:;若平分,则;,正确的有(只填序号)解:,又,故正确;由全等可得:,连接,点是中点,在和中,又,即为等腰直角三角形,故正确,故正确,设与交于点,连接,为等腰直角三角形,而,故正确;,平分,即,为等腰直角三角形,故正确;,故正
18、确;故答案为:27(2020山西)(3分)如图,在RtABC中,ACB90,AC3,BC4,CDAB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为解:如图,过点F作FHAC于H 在RtABC中,ACB90,AC3,BC4,AB5,CDAB,SABCACBCABCD,CD,AD,FHEC,ECEB2,设FH2k,AH3k,CH33k,tanFCH,k,FH,CH3,CF,DF,故答案为28(2020四川眉山)(4分)如图,等腰ABC中,ABAC10,边AC的垂直平分线交BC于点D,交AC于点E若ABD的周长为26,则DE的长为解:边AC的垂直平分线交BC于点D,交AC于点E,AED
展开阅读全文