2020年高一数学上期末试题(带答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年高一数学上期末试题(带答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 数学 上期 试题 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、2020年高一数学上期末试题(带答案)一、选择题1已知在R上是奇函数,且A-2B2C-98D982已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是ABCD3设集合,则( )ABCD4在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,已知函数,则满足的实数的取值范围是( )ABCD5已知二次函数的二次项系数为,且不等式的解集为,若方程,有两个相等的根,则实数( )ABC或D或6德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵只要有一个法则,使得取值范围
2、中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f(x)由右表给出,则的值为()A0B1C2D37函数的单调递增区间为( )ABCD8已知函数满足,若方程有个不同的实数根(),则( )ABCD9设是上的周期为2的函数,且对任意的实数,恒有,当时,若关于的方程(且)恰有五个不相同的实数根,则实数的取值范围是( )ABCD10偶函数满足,且当时,若函数有且仅有三个零点,则实数的取值范围是( )ABCD11已知=,若,则等于A5B7C9D1112对任意实数,规定取,三个值中的最小值,则( )A无最大值,无最小值B有最大值2,最小值1C有最大值1,无
3、最小值D有最大值2,无最小值二、填空题13如果函数是幂函数,且图像不经过原点,则实数_.14已知,集合,且函数是偶函数,则的取值范围是_.15已知偶函数的图象过点,且在区间上单调递减,则不等式的解集为_16函数,其中,若动直线与函数的图像有三个不同的交点,则实数的取值范围是_.17已知,若幂函数为奇函数,且在上递减,则的取值集合为_.18已知函数,若方程恰有三个不同的实数解,则的取值范围为_;19已知函数,若有最大值或最小值,则m的取值范围为_20已知函数,若,则实数_.三、解答题21已知函数.(1)当时,求该函数的值域;(2)求在区间()上的最小值.22科研人员在对某物质的繁殖情况进行调查时
4、发现,1月、2月、3月该物质的数量分别为3、5、9个单位.为了预测以后各月该物质的数量,甲选择了模型,乙选择了模型,其中y为该物质的数量,x为月份数,a,b,c,p,q,r为常数.(1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由.(2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?23已知函数为在上的奇函数,且.(1)用定义证明在的单调性;(2)解不等式.24已知函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为,求的值25已知集合,.(1)若,求实数的取值范围;(2)若,求实数的取值范围.26
5、已知函数(,且),且.(1)若,求实数的取值范围;(2)若方程有两个解,求实数的取值范围.【参考答案】*试卷处理标记,请不要删除一、选择题1A解析:A【解析】f(x4)f(x),f(x)是以4为周期的周期函数,f(2 019)f(50443)f(3)f(1)又f(x)为奇函数,f(1)f(1)2122,即f(2 019)2.故选A2A解析:A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于 当时,取得两个最值 本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等
6、式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.3B解析:B【解析】【分析】先化简集合A,B,再求得解.【详解】由题得,.所以.故选B【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4C解析:C【解析】当时,;当时,;所以,易知,在单调递增,在单调递增,且时,时,则在上单调递增,所以得:,解得,故选C点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定义域和单调性的双重要求,则,解得答案5A解析:A【解析】【分析】设,可知、为方程的两根,且,
7、利用韦达定理可将、用表示,再由方程有两个相等的根,由求出实数的值.【详解】由于不等式的解集为,即关于的二次不等式的解集为,则.由题意可知,、为关于的二次方程的两根,由韦达定理得,由题意知,关于的二次方程有两相等的根,即关于的二次方程有两相等的根,则,解得,故选:A.【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.6D解析:D【解析】【分析】采用逐层求解的方式即可得到结果.【详解】,则,又,故选D【点睛】本题主要考查函数的基础知识,强调一一对应性,属于基础题7C解析:C【解
8、析】【分析】求出函数的定义域,然后利用复合函数法可求出函数的单调递增区间.【详解】解不等式,解得或,函数的定义域为.内层函数在区间上为减函数,在区间上为增函数,外层函数在上为减函数,由复合函数同增异减法可知,函数的单调递增区间为.故选:C.【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.8C解析:C【解析】【分析】函数和都关于对称,所有的所有零点都关于对称,根据对称性计算的值.【详解】,关于对称,而函数也关于对称,的所有零点关于对称,的个不同的实数根(),有1011组关于对称,.故选:C【点睛】本题考查根据对称性计算零点之和,重点考查函数的对
9、称性,属于中档题型.9D解析:D【解析】由,知是偶函数,当时,且是上的周期为2的函数,作出函数和的函数图象,关于的方程(且)恰有五个不相同的实数根,即为函数和的图象有5个交点,所以,解得.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等10D解析:D【解析】试题分析:由,可知函数图像关于对称,又因为为偶函数,所以函数图像关于轴对称.所以函数的周期为2,要使函数有且仅有三个零点,即函数和函数图形有且只有3个
10、交点.由数形结合分析可知,故正确.考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解11B解析:B【解析】因为=,所以=,则=.选B.12D解析:D【解析】【分析】由题意画出函数图像,利用图像性质求解【详解】画出的图像,如图(实线部分),由得故有最大值2,无最小值故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题二、填空
展开阅读全文