书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型2020年高考数学-立体几何试题分类汇编-理.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5509830
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:27
  • 大小:3.57MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020年高考数学-立体几何试题分类汇编-理.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 年高 数学 立体几何 试题 分类 汇编 下载 _其它资料_高考专区_数学_高中
    资源描述:

    1、2020年高考数学 立体几何试题分类汇编 理(安徽)(A) 48 (B)32+8 (C) 48+8 (D) 80(北京)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是332正视图侧视图俯视图图1A8 B C10 D(湖南)设图一是某几何体的三视图,则该几何体的体积为( )A B C D 答案:B解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积。(广东)如图l3某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 A. B. C. D.(江西)已知是三个相互平行的平面,平面之间的距离为,平面之间的距离为.直线与分别交于.那么是的

    2、( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件答案:C 解析:平面平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知如果,同样是根据两个三角形全等可知(辽宁)如图,四棱锥SABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是AACSB BAB平面SCD CSA与平面SBD所成的角等于SC与平面SBD所成的角DAB与SC所成的角等于DC与SA所成的角(辽宁)已知球的直径SC=4,A,B是该球球面上的两点,AB=,则棱锥SABC的体积为A B CD1(全国2)已知直二面角,点,C为垂足,为垂足若AB=2,AC=BD=1,则D

    3、到平面ABC的距离等于(A) (B) (C) (D) 1 【思路点拨】本题关键是找出或做出点D到平面ABC的距离DE,根据面面垂直的性质不难证明平面,进而平面ABC,所以过D作于E,则DE就是要求的距离。【精讲精析】选C.如图,作于E,由为直二面角,得平面,进而,又,于是平面ABC,故DE为D到平面ABC的距离。在中,利用等面积法得.(全国新)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为(山东)右图是长和宽分别相等的两个矩形给定下列三个命题:存在三棱柱,其正(主)视图、俯视图如右图;存在四棱柱,其正(主)视图、俯视图如下图;存在圆柱,其正(主)视图、俯视图如下图其中真

    4、命题的个数是(A)3 (B)2 (C)1 (D)05. (陕西)某几何体的三视图如图所示,则它的体积是( )(A) 8-2 (四川),是空间三条不同的直线,则下列命题正确的是 (A), (B), (C) ,共面 (D),共点,共面(浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是(浙江)下列命题中错误的是A如果平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面,平面,那么D如果平面,那么平面内所有直线都垂直于平面(重庆)高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABC

    5、D的中心与顶点S之间的距离为(A) (B) (C) (D) (天津)一个几何体的三视图如右图所示(单位:),则该几何体的体积为_(四川)如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 . (上海)若圆锥的侧面积为,底面积为,则该圆锥的体积为 。(全国新)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。(全国2)已知平面截一球面得圆M,过圆心M且与成二面角的平面截该球面得圆N.若该球面的半径为4,圆M的面积为4,则圆N的面积为 (A)7 (B)9 (C)11 (D)13【思路点拨】做出如图所示的图示,问题即可解决。【精讲精析】选B.作示意

    6、图如,由圆M的面积为4,易得,中,。故.(全国2)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .【思路点拨】本题应先找出两平面的交线,进而找出或做出二面角的平面角是解决此问题的关键,延长EF必与BC相交,交点为P,则AP为面AEF与面ABC的交线.【精讲精析】.延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。(福建)三棱锥P-ABC中,PA底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等

    7、于_。(辽宁)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 (重庆)如题(19)图,在四面体中,平面平面,. ()若,求四面体的体积; () 若二面角为,求异面直线与所成角的余弦值.(四川)如图,在直三棱柱AB-A1B1C1中 BAC=90,AB=AC=AA1 =1D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1平面BDA(I)求证:CD=C1D:(II)求二面角A-A1D-B的平面角的余弦值; ()求点C到平面B1DP的距离(浙江)如图,在三棱锥中,D为BC的中点,PO平面ABC,垂足O落在线段AD上,已

    8、知BC=8,PO=4,AO=3,OD=2()证明:APBC;()在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。本题主要考查空是点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。满分15分。方法一: (I)证明:如图,以O为原点,以射线OP为z轴的正半轴,建立空间直角坐标系Oxyz则,由此可得,所以,即(II)解:设设平面BMC的法向量,平面APC的法向量由得即由即得由解得,故AM=3。综上所述,存在点M符合题意,AM=3。方法二:(I)证明:由AB=AC,D是BC的中点,得又平面ABC,得因为,所

    9、以平面PAD,故(II)解:如图,在平面PAB内作于M,连CM,由(I)中知,得平面BMC,又平面APC,所以平面BMC平面APC。在在,在所以在又从而PM,所以AM=PA-PM=3。综上所述,存在点M符合题意,AM=3。(上海)已知是底面边长为1的正四棱柱,是和的交点。 设与底面所成的角的大小为,二面角的大小为。求证:; 若点到平面的距离为,求正四棱柱的高。解:设正四棱柱的高为。 连,底面于, 与底面所成的角为,即 ,为中点,又, 是二面角的平面角,即 ,。 建立如图空间直角坐标系,有设平面的一个法向量为, ,取得 点到平面的距离为,则。(天津)如图,在三棱柱中,是正方形的中心,平面,且()

    10、求异面直线AC与A1B1所成角的余弦值;()求二面角的正弦值;()设为棱的中点,点在平面内,且平面,求线段的长本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是 所以异面直线AC与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 则即不妨令,可得于是从而所以二面角AA1C1B的正弦值为 (III)解:由N为棱B1C1的中

    11、点,得设M(a,b,0),则由平面A1B1C1,得即解得故因此,所以线段BM的长为方法二:(I)解:由于AC/A1C1,故是异面直线AC与A1B1所成的角.因为平面AA1B1B,又H为正方形AA1B1B的中心,可得因此所以异面直线AC与A1B1所成角的余弦值为(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以,过点A作于点R,连接B1R,于是,故为二面角AA1C1B1的平面角.在中,连接AB1,在中,从而所以二面角AA1C1B1的正弦值为(III)解:因为平面A1B1C1,所以取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND/C1H且.又

    12、平面AA1B1B,所以平面AA1B1B,故又所以平面MND,连接MD并延长交A1B1于点E,则由得,延长EM交AB于点F,可得连接NE.在中,所以可得连接BM,在中,(陕西)如图,在中,是上的高,沿把折起,使 。()证明:平面平面;()设为的中点,求与夹角的余弦值。解()折起前是边上的高,当折起后,AD,AD,又DB,平面,AD 平面平面BDC.()由及()知DA,DC两两垂直,不防设=1,以D为坐标原点,以,所在直线轴建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,0),=,=(1,0,0,),与夹角的余弦值为,=.(山东)在如图

    13、所示的几何体中,四边形ABCD为平行四边形,ACB=,平面,EF,.=.()若是线段上的中点,求证:平面;()若-,求平面角-的大小(全国新)如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB=60,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。解:()因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD. 故PABD()如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,。设平面PAB的法向量为n=(x,y,z),则 即 因此可取n=设

    14、平面PBC的法向量为m,则 可取m=(0,-1,) 故二面角A-PB-C的余弦值为 (全国2)如图,四棱锥中,,,侧面为等边三角形,.()证明:;()求与平面所成角的大小.【思路点拨】本题第(I)问可以直接证明,也可建系证明。(II)建立空间直角坐标系,利用空间向量的坐标运算计算把求角的问题转化为数值计算问题,思路清晰思维量小。【精讲精析】计算SD=1,于是,利用勾股定理,可知,同理,可证又,因此,.(II)过D做,如图建立空间直角坐标系D-xyz,A(2,-1,0),B(2,1,0),C(0,1,0),可计算平面SBC的一个法向量是.所以AB与平面SBC所成角为.(辽宁)如图,四边形ABCD

    15、为正方形,PD平面ABCD,PDQA,QA=AB=PD (I)证明:平面PQC平面DCQ; (II)求二面角QBPC的余弦值解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz. (I)依题意有Q(1,1,0),C(0,0,1),P(0,2,0).则所以即PQDQ,PQDC.故PQ平面DCQ.又PQ平面PQC,所以平面PQC平面DCQ. 6分 (II)依题意有B(1,0,1),设是平面PBC的法向量,则因此可取设m是平面PBQ的法向量,则可取故二面角QBPC的余弦值为 12分(广东)如图5,在椎体中,是便常委边长为1的棱形,且,分别是的中点,(1)

    16、证明:(2)求二面角的余弦值。(江西)(1)如图,对于任一给定的四面体,找出依次排列的四个相互平行的平面 ,使得(i=1,2,3,4),且其中每相邻两个平面间的距离都相等; (2)给定依次排列的四个相互平行的平面,其中每相邻两个平面间的距离为1,若一个正四面体的四个顶点满足:(i=1,2,3,4),求该正四面体的体积.解: (1)将直线三等分,其中另两个分点依次为,连接,作平行于的平面,分别过,即为。同理,过点作平面即可的出结论。 (2)现设正方体的棱长为a,若,由于得,那么,正四面体的棱长为,其体积为(即一个棱长为a的正方体割去四个直角三棱锥后的体积)(湖南)如图5,在圆锥中,已知的直径的中

    17、点(I)证明:(II)求二面角的余弦值解:(I)连接,因为,为的中点,所以.又因为内的两条相交直线,所以而,所以。(II)在平面中,过作于,由(I)知,,所以又所以.在平面中,过作连接,则有,从而,所以是二面角的平面角在在在在,所以。故二面角的余弦值为。(江苏)如图,在四棱锥中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点求证:(1)直线EF平面PCD;(2) 平面BEF平面PAD(湖北)如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.()当=1时,求证:;()设二面角的大小为,求的最小值.(福建)如图,四棱锥P-ABCD中,PA底面A

    18、BCD,四边形ABCD中,ABAD,AB+AD=4,CD=,.(I)求证:平面PAB平面PAD;(II)设AB=AP. (i)若直线PB与平面PCD所成的角为,求线段AB的长; (ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。(北京)如图,在四棱锥中,平面,底面是菱形,.()求证:平面()若求与所成角的余弦值;()当平面与平面垂直时,求的长.证明:()因为四边形ABCD是菱形,所以ACBD.又因为PA平面ABCD.所以PABD.所以BD平面PAC.()设ACBD=O.因为BAD=60,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立

    19、空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0).所以设PB与AC所成角为,则.()由()知设P(0,t)(t0),则设平面PBC的法向量,则所以令则所以同理,平面PDC的法向量因为平面PCB平面PDC,所以=0,即解得所以PA=(江苏)如图,在四棱锥中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点求证:(1)直线EF平面PCD;平面BEF平面PAD(江苏)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。P(安徽)如图,为多面体,平面与平面垂直,点在线段上,,,都是正三角形。()证明直线;

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020年高考数学-立体几何试题分类汇编-理.doc
    链接地址:https://www.163wenku.com/p-5509830.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库