书签 分享 收藏 举报 版权申诉 / 4
上传文档赚钱

类型(完整版)新人教版八年级数学下册二次根式的知识点汇总.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5508932
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:4
  • 大小:238KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)新人教版八年级数学下册二次根式的知识点汇总.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 新人 八年 级数 下册 二次 根式 知识点 汇总 下载 _八年级下册_人教版(2024)_数学_初中
    资源描述:

    1、二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。 例1下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、-、(x0,y0) 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0知识点二:取值范围1、 二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2、 二次根式无意义的条件:因负数没有算

    2、术平方根,所以当a0时,没有意义。 例2当x是多少时,在实数范围内有意义?例3当x是多少时,+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。例4(1)已知y=+5,求的值(2)若+=0,求a2004+b2004的值知识点四:二次根式()的性质

    3、()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,. 例1 计算 1()2 2(3)2 3()2 4()2例2在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成

    4、,再根据绝对值的意义来进行化简。 例1 化简 (1) (2) (3) (4)例2 填空:当a0时,=_;当aa,则a是什么数?例3当x2,化简-知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的乘除1、 乘法(a0,b0) 反过来:=(a0,b0)2、除法=(a0,b0) 反过来,=(a0,b0) (思考:b的取值与a相同吗?为什么?不相同,因为b在分

    5、母,所以不能为0) 例1计算 (1)4 (2) (3) (4) 例2 化简(1) (2) (3) (4) 例3判断下列各式是否正确,不正确的请予以改正: (1) (2)=4=4=4=8 例4计算:(1) (2) (3) (4) 例5化简: (1) (2) (3) (4)例6已知,且x为偶数,求(1+x)的值3、最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式;(2)被开方数中不含开得尽方的因数或因式(熟记20以内数的平方;因数或因式间是乘积的关系,当被开方数是整式时要先判断是否能够分解因式,然后再观察各个因式的指数是否是2(或2的倍数),若是则说明含有能开方的因式,则不满足

    6、条件,就不是最简二次根式)例1把下列二次根式化为最简二次根式(1) ; (2) ; (3) 4、化简最简二次根式的方法:(1) 把被开方数(或根号下的代数式)化成积的形式,即分解因式;(2) 化去根号内的分母(或分母中的根号),即分母有理化;(3) 将根号内能开得尽方的因数(或因式)开出来(此步需要特别注意的是:开到根号外的时候要带绝对值,注意符号问题)5.有理化因式:一般常见的互为有理化因式有如下几类: 与; 与;与; 与 说明:利用有理化因式的特点可以将分母有理化13、同类二次根式:被开方数相同的(最简)二次根式叫同类二次根式。 判断是否是同类二次根式时务必将各个根式都化为最简二次根式。如

    7、与知识点八:二次根式的加减1、二次根式的加减法:先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。 例1计算(1)+ (2)+ 分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2计算 (1)3-9+3(2)(+)+(-)例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值2、二次根式的混合运算:先计算括号内,再乘方(开方),再乘除,再加减3、二次根式的比较:(1)若,则有;(2)若,则有 (3)将两个根式都平方,比较平方后的大小,对应平方前的大小例4比较3与4的大小

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)新人教版八年级数学下册二次根式的知识点汇总.doc
    链接地址:https://www.163wenku.com/p-5508932.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库