(完整版)数列知识点归纳.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)数列知识点归纳.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 数列 知识点 归纳
- 资源描述:
-
1、数列一、等差数列性质总结1. 等差数列的定义式:(d为常数)();2等差数列通项公式: , 首项:,公差:d 推广: 从而;3等差中项(1)如果,成等差数列,那么叫做与的等差中项即:或(2)等差中项:数列是等差数列4等差数列的前n项和公式:(其中A、B是常数,所以当d0时,Sn是关于n的二次式且常数项为0)特别地,当项数为奇数时,是项数为2n-1的等差数列的中间项(项数为奇数的等差数列的各项和等于项数乘以中间项)5等差数列的判定方法 (1) 定义法:若或(常数) 是等差数列 (2) 等差中项:数列是等差数列 (3) 数列是等差数列(其中是常数)。(4)数列是等差数列,(其中A、B是常数)。6等
2、差数列的证明方法 定义法:若或(常数) 是等差数列等差中项性质法:7.提醒:(1)等差数列的通项公式及前和公式中,涉及到5个元素:、及,其中、称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)设项技巧:一般可设通项奇数个数成等差,可设为,(公差为);偶数个数成等差,可设为,,(注意;公差为2)8.等差数列的性质:(1)当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;前和是关于的二次函数且常数项为0.(2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。(3)当时,则有,特别地,当时,则有.(4)若、为等差数列,则都为等差数列
3、,其中 (5) 若是等差数列,则 ,也成等差数列 (6)数列为等差数列,每隔k (k)项取出一项()仍为等差数列(7)设数列是等差数列,d为公差,是奇数项的和,是偶数项项的和,是前n项的和当项数为偶数时,则 当项数为奇数时,则(其中是项数为2n-1的等差数列的中间项)(8)、的前和分别为、,则.(9)等差数列的前n项和,前m项和,则前m+n项和则(10) 求的最值法一:因等差数列前项是关于的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性。法二:(1)“首正”的递减等差数列中,前项和的最大值是所有非负项之和即当 由可得达到最大值时的值 (2) “首负”的递增等差数列中,前项和的最小值
4、是所有非正项之和。即 当 由可得达到最小值时的值或求中正负分界项注意:解决等差数列问题时,通常考虑两类方法:基本量法:即运用条件转化为关于和的方程;巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量二、等比数列性质总结1、等比数列的定义: ,注意:(1)公比一定是由后项比前项(相邻的两项)所得,而不能用前项比后项来求;(2)由公比知,等比数列中的每一项都不为零;(3). 在等比数列中, 当,q 1时,数列是递增数列; 当,数列是递增数列; 当,时,数列是递减数列; 当,q 1时,数列是递减数列; 当时,数列是常数列; 当时,数列是摆动数列.(4)若一个数列既为等差数列又为等比数列为
5、非零常数列.(5)等比数列的奇数项的符号相同;偶数项的符号相同.2、等比数列的通项公式: 推广为:注意:(1)等比数列的计算问题中,首项和公比是基本量;(2) 有以下几种方法可以计算公比 其中,若公式中的指数,为偶数,开方求公比,要根据题意选取正确的符号。3、等比中项:若,是等比数列,则叫做与的等比中项. 由等比数列的定义可知:.注意:(1)同号;也是的等比中项;均为非零常数;(2)任意两数的等比中项不一定存在且不唯一;所以,是,成等比数列的必要非充分条件;4、等比数列的性质:(1) 下标和性质:下标和相等,则对应项的积相等;使用条件:等式两边项的个数相同,且项数之和相同.在等比数列, 若且,
展开阅读全文