(完整版)新人教版小学数学总复习知识点汇总.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)新人教版小学数学总复习知识点汇总.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 新人 小学 数学 复习 知识点 汇总 下载 _其他_数学_小学
- 资源描述:
-
1、 新人教版小学数学总复习知识点汇总第一部分 数和数的运算(一) 整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的0,1,2,3厖叫做自然数。一个物体也没有,用0表示。0是最小的自然数。1是自然数的基本单位,任何一个自然数都是由若干个1组成。0是最小的自然数,没有最大的自然数。正整数(1、2、3、4、., 自然数零(0既不是正数,也不是负数)负整数(-1、-2、-3、4?)(3)整数(2) 、负数:负数和正数是表示相反意义的量。2、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿厖.都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制
2、计数法。3、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。4、数的整除:整数a除以整数b(b子0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。(1)如果数a能被数b(b0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。如:因为35能被7整除,所以35是7的倍数,7是35的约数。(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。如:3的倍数有:3、6、9、12厖其中最小
3、的倍数是3,没有最大的倍数。(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。(7)一个数各位数上的和能被9整除,这个数就能被9整除。(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。(9)能被2整除的数叫做偶数。最小的偶数是0。不能被2整除的数叫做奇数。最小的奇数是1。(10)一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。最小的质数是
4、2100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。(11)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。最小的含数是4。例如4、6、8、9、12都是合数。(l2)l不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。(13)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3?,3和5叫做15的质因数。(14)把一个合数用质因数相乘的形式表示出来,叫做分解质
5、因数。例如:把28=2*2*7(15)几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公约数。例如:12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。(16)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:【1】1和任何自然数互质。【2】相邻的两个自然数互质。【3】两个不同的质数互质。【4】当合数不是质数的倍数时,这个合数和这个质数互质。【5】两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。【6】如果较小数是较大数的
6、约数,那么较小数就是这两个数的最大公约数。【7】如果两个数是互质数,它们的最大公约数就是1。(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6、8、10、12、14、16、18?3的倍数有3、6、9、12、15、18厖其中6、12、18厖是2、3的公倍数,6是它们的最小公倍数。【1】如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。【2】如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。【3】几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1、小数的意义(1)把整数1平均分成10份、10
7、0份、1000份厖得到的十分之几、百分之几、千分之几厖可以用小数表示。(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几(3)一个小数由整数部分、小数部分和小数点组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。(4)在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。(2)带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。(3)有限小数,小
8、数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33. 3.1415926.(5)无限不循环小数;,一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555. 0.333333 12.109109.(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99.的循环节是“9”,0.5454.的循环节是“54”。(8)纯循环小
9、数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111. 0.5656.(9)混循环小数;循环节不是从小数部分第一位开始的,叫做混循环小数。例如:3.12222. 0.03333333.(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777.简写作:3.7 , 0.5802302.简写作:0.5302。【上述循环节均用划横线形式表示】(三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。(2)在分数里,中间的横线叫做分数
10、线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多份。(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2、分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数:表示一个数是另一个数的百分之几的数叫做
11、百分数,也叫做百分率或百分比。百分数通常用%”来表示。百分号是表示百分数的符号。二、方法(一)数的读法和写法整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数
12、。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。3、大小比较(1)比较整数大小:(2)比较小数的大小:(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2、分
13、数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1、把一个合数分解质因
14、数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2、求几个数的最大公因数3、求几个数的最小公倍数4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有l时,这两个合数互质。(五)约分和通分(依据分数的基本性质)(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。(2)通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三、性质和规律(一)商不变的规律商不变的规律:被除数和除数同时乘
15、或除以相同的数(0除外),商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍3、小数点向左移或者向右移位数不够时,要用“0补足位。(四)分数的基本性质(通分和约分的依据)分数的基本性质:分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变。(五)分数
16、与除法的关系1、被除数+除数=被除数 除数2、因为0不能作除数,所以分数的分母不能为0。四、四则运算(一)运算的意义1、整数加法:把两个数合并成一个数的运算叫做加法。2、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减加法和减法互为逆运算。3、整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,0和任何数相乘都得0;1和任何数相乘都得任何数。4、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。乘法和除法互为逆运算。在除法里,0不能做除数。5、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这
17、个数的十分之几、百分之几、千分之几是多少。6、乘积是1的两个数叫做互为倒数。(二)各部分的关系1、加数+加数=和;和-一个加数=另一个加数2、被减数-减数=差;被减数-差=减数;差+减数=被减数3、因数因数=积;积?一个因数=另一个因数(五)运算顺序1、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除(二级运算),后算加减(一级运算)。2、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。3、加法和减法叫做第一级运算。乘法和除法叫做第二级运算。五、应用1、典型应用题。(1)平均数:数量之和数量的个数=平均数。例:一辆汽车以每小时100千米的速度从甲地开往乙
18、地,又以每小时60千米的速度从乙地开往甲地。求这辆车的平均速度。分析:把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“2”,1/100+1/60,汽车的平均速度为:2?/75=75(千米)(2)归一问题例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。6930(477431)=45(天)(3)归总问题:例:修一条水渠,原计划每天修800米,6天修完。实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。80064=1200(米)不同之处是“归一”先
19、求出单一量,再求总量,归总问题是先求出总量,再求单一量。(4)行程问题:解题关键及规律:同时同地相背而行:路程=速度和时间。同时相向而行:相遇时间=相遇路程速度和;速度和=相遇路程相遇时相遇路程=速度和时间同时同向而行(速度慢的在前,快的在后):追及时间-路程速度差同时同地同向而行(速度慢的在后,快的在前):路程=速度差时间。例:甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米乙每小时行9千米,甲几小时追上乙?分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是
20、追击所需要的时间。列式:28?(16-9)=4(小时)(5) 植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵数四种数量关系的应用题,叫做植树问题。解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定实验线段指数还是沿周长植树,然后按基本公式进行计算。解题规律:a.沿线段植树棵树=总路程株距+1棵树=段数+1棵数总路程(棵树-1)总路程-株距(棵树-1)b.沿周长植树棵数总路程株距株距总路程?棵树总路程株距*棵树(6)鸡兔问题:假设法或方程2、分数和百分数的应用(1)、分数乘法、除法应用题:解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,单位1已知
展开阅读全文