(完整版)数列知识点常用结论.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)数列知识点常用结论.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 数列 知识点 常用 结论
- 资源描述:
-
1、数列知识点及常用结论一、等差数列(1)等差数列的基本公式通项公式: (从第1项开始为等差) (从第m项开始为等差) 前项和公式:(2)证明等差数列的法方定义法:对任意的n,都有(d为常数)为等差数列等差中项法:(n)为等差数列通项公式法:=pn+q (p,q为常数且p0) 为等差数列 即:通项公式位n的一次函数,公差,首项前项和公式法: (p, q为常数) 为等差数列 即:关于n的不含常数项的二次函数(3)常用结论若数列,为等差数列,则数列,(k, b为非零常数)均为等差数列.若m+n=p+q (m,n,p,q),则=.特别的,当n+m=2k时,得=在等差数列中,每隔k(k)项取出一项,按原来
2、的顺序排列,所得的数列仍为等差数列,且公差为(k+1)d(例如:,仍为公差为3d的等差数列)若数列为等差数列,则记,则,仍成等差数列,且公差为d若为等差数列的前n项和,则数列也为等差数列. 此性质对任何一种数列都适用求最值的方法:I: 若0,公差d0,则当时,则有最大值,且最大; 若0,则当时,则有最小值,且最小;II:求前项和的对称轴,再求出距离对称轴最近的正整数,当 时,为最值,是最大或最小,通过的开口来判断。二、等比数列(1)等比数列的基本公式通项公式: (从第1项开始为等比) (从第m项开始为等差)前项和公式:,(2)证明等比数列的法方定义法:对任意的n,都有(q0) 为等比数列等比中
3、项法:(0)为等比数列通项公式法:为等比数列(3)常用结论若数列,为等比数列,则数列, (k为非零常数) 均为等比数列.若m+n=p+q (m, n, p, q),则=.特别的,当n+m=2k时,得=在等比数列中,每隔k(k)项取出一项,按原来的顺序排列,所得的数列仍为等比数列,且公比为 (例如:,仍为公比的等比数列)若数列为等差数列,则记,则,仍成等比数列,且公差为三、求任意数列通项公式的方法(1)累加法:若满足an+1=an+f(n)利用累加法求:例题:若,且,求:练习题:若数列满足,且(2)累乘法:若满足利用累乘法求: 例题:在数列an中,求:.练习题:在数列an中,且,求: (提示:)
展开阅读全文