书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型(完整版)初中数学一元二次方程知识点总结与练习.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5508604
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:9
  • 大小:463.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)初中数学一元二次方程知识点总结与练习.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 初中 数学 一元 二次方程 知识点 总结 练习 下载 _其它资料_数学_初中
    资源描述:

    1、知识点总结:一元二次方程知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。2.一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程;(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a0);3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+b

    2、x+c=0(a0)。一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。4.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,当b0时,方程没有实数根。(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。配方法解一元二次方程的一般步骤:现将已

    3、知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q0,方程的根是x=-pq;如果q0,方程无实根(3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。5.一元二次方程根的判别式 根的判别式:一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即6.一元二次方程根与系数的关系如果方程的两个实数根是,那么,。也就

    4、是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。7.分式方程分母里含有未知数的方程叫做分式方程。8.分式方程的一般解法解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。知识点1.只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。例题:1、判别下列方程是不是一元二次方程,是的打“”,不是的打“”,并说明理由.

    5、(1)2x-x-3=0. (2)-y=0. (3) t=0. (4) x-x=1. (5) x-2y-1=0. (6) -3=0. (7) =2. (8)(x+2)(x-2)=(x+1). (9)3x-+6=0. (10)3x=-3. 1、若关于x的方程a(x1)2=2x22是一元二次方程,则a的值是 ( )(A)2(B)2(C)0(D)不等于22、已知关于的方程,当 时,方程为一次方程;当 时,两根中有一个为零。3、已知关于的方程:(1) m为何值时方程为一元一次方程;(2) m为何值时方程为一元二次方程。知识点二.一元二次方程的一般形式一元二次方程的一般形式是:,其中是二次项,叫二次项系数

    6、;是一次项,叫一次项系数,是常数项。特别警示:(1)“”是一元二次方程的一般形式的一个重要组成部分;(2)二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。知识点三.一元二次方程的解使一元二次方程左右两边相等的未知数的值,叫方程的解。例题:1、已知方程的一个根是1,则m的值是 。 2、设是一元二次方程的较大根,是较小根,那么的值是 ( )(A)-4 (B)-3 (C)1 (D)23、已知关于的一元二次方程 的一个解与方程的解相同。(1) 求的值;(2) 求方程的另一个解。知识点四.一元二次方程的解法一元二次方程的四种解法:(1)

    7、 直接开平方法:如果,则(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程的求根公式是;(4) 因式分解法:如果则。温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。例题:解方程: 1、解下列方程:(1) (2) (3) (4) 知识点五.一元二次方程根的判别式对于一元二次方程的根的判别式是:(1) 当时,方程有两个不相等的实数根;(2) 当时,方程有两个相等的实数根;(3) 当时,方程无实数根。温馨提

    8、示:若方程有实数根,则有。例题:1、已知方程有两个不相等的实数根,则k= 。2、当m满足何条件时,方程有两个不相等实根?有两个相等实根?有实根?3、关于的方程无实根,试解关于的方程。4、已知关于的一元二次方程,求证:不论m为任何实数,总有两个不相等的实数根。知识点六.一元二次方程根与系数的关系若一元二次方程的两个实数根为,则。温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。例题:1、关于的一元二次方程的两个实数根分别是,且满足,则k的值为: ( )(A) (B) (C) (D)不存在2、已知是关于的一元二次方程的两个不相等的实数根,且满足,则m的值是 ( )(A)3或-1 (B)

    9、3 (C)1 (D)-3或13、方程与方程的所有根的乘积是 4、两个不相等的实数m,n满足,则mn的值为 。5、设是关于的一元二次方程的两个根,是关于的一元二次方程的两个根,则的值分别等于多少?知识点七.一元二次方程的实际应用列一元二方程解应用题的一般步骤:(1)审题(2)设未知数(3)列方程(4)解方程(5)检验(6)写出答案。在检验时,应从方程本身和实际问题两个方面进行检验。1、有一个两位数,十位数字比个位数字大3,而此两位数比这两个数字之积的二倍多5,求这个两位数。2、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品

    10、平均每次降价的百分率是多少?一元二次方程综合复习1、下列方程中,关于的一元二次方程是 ( )A. B. C. D.2、方程(m21)x2mx50 是关于x的一元二次方程,则m满足的条件是()(A)m1 (B)m0 (C)|m|1 (D)m13、若是一元二次方程的一个根,则 。4、实数是方程 的根 ( )(A) (B)(C) (D)5、方程的解是: ( )A. B. C. D.6、关于的一元二次方程两个不相等的实数根,则k的取值范围是 ( )(A) (B) (C) (D)7、在下列方程中,有实数根 的是 ( )A) B) C) D)8、关于的一元二次方程有两个实数根,且,则m的取值范围是 ( )

    11、(A) (B) (C) (D)9.若(x+y)(1xy)+6=0,则x+y的值是( ) A2 B3 C2或3 D2或310、若(m+1)+2mx1=0是关于x的一元二次方程,则m的值是_ _11、填上适当的数,使等式成立:12、当= 时,代数式比代数式的值大2 13、某商品原价每件25元,在圣诞节期间连续两次降价,现在商品每件16元,则该玩具平均每次降价的百分率是 。17、设是关于的方程的两个根,且满足,求m的值。19、已知关于x的一元二次方程。(1)求证:方程有两个不相等的实数根;(2)设的方程有两根分别为,且满足 求k的值。21.已知:ABC的两边AB、AC的长是关于的一元二次方程的两个实

    12、数根,第三边BC的长为5,问:k取何值时,ABC是以BC为斜边的直角三角形?22、一块长方形铁皮的长是宽的倍,四角各截去一个正方形,制成高是cm,容积是cm3的无盖长方体容器。求这块铁皮的长和宽。23、如图,有一面积为150 m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的长为35 m,求鸡场的长与宽各为多少米?24、西瓜经营户以2元千克的价格购进一批小型西瓜,以3元千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价,经调查发现,这种小西瓜每降价0.1元千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,

    13、应将每千克小型西瓜的售价降低多少元?25、在矩形ABCD中,AB=6cm,BC=3cm。点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s的速度移动。如果P、Q同时出发,用t(s)表示移动的时间(0t3)。那么,当t为何值时,QAP的面积等于2cm2?1()已知均不为0,且,求的值;()已知:,且 ,求的值2已知关于的一元二次方程x24xk10(1)若=1是方程的一个根,求k值和方程的另一根;(2)设x1,x2是关于x的方程x24xk10的两个实数根,是否存在实数k,使得x1x2x1x2成立?请说明理由3已知关于x的一元二次方程x22x+m1=0有两个实数根x1,x2(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值4对于实数a,b,定义运算“”:,例如:53,因为53,所以53=5332=6若x1,x2是一元二次方程x26x+8=0的两个根,则x1x2= 5若满足,则的值 6已知方程x2+x-1=0的两个根为、.则的值为 .

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)初中数学一元二次方程知识点总结与练习.doc
    链接地址:https://www.163wenku.com/p-5508604.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库