(完整版)初一数学湘教版(下)知识点.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)初一数学湘教版(下)知识点.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 初一 数学 湘教版 知识点 下载 _七年级下册_湘教版(2024)_数学_初中
- 资源描述:
-
1、第一章 二元一次方程组一、二元一次方程组 1.二元一次方程:含有两个未知数(二元),并且含未知数的项的次数都是1,称这样的方程为二元一次方程。 2.二元一次方程组:把两个含相同未知数的二元一次方程联立起来,组成的方程组叫做二元一次方程组。 3.方程的解:使二元一次方程两边的值相等的两个未知数的值叫做这个二元一次方程的一个解,二元一次方程有无数组解。 4.方程组的解:使二元一次方程组两边的值相等的两个未知数的值叫做这个二元一次方程的一个解,求方程组的解的过程叫做解方程组。二、二元一次方程组的解法 1.基本思想:消元。通过把二元一次方程组变成一个一元一次方程,再解这个一元一次方程得等其中一个未知数
2、的值,再把这个值带入原二元一次方程组得到另一个未知数的值,从而得到这个二元一次方程组的解。 2.代入消元法:把方程组中的一个方程的某一个未知数用含有另一个未知数的代数式表示,然后把它带入另一个方程中,得到一个一元一次方程。 3.加减消元法:两个二元一次方程中同一未知数的系数相同或相反时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程。三、二元一次方程组的应用(一般步骤)审题:弄清题中已知的和未知的,求什么,各数量间的关系。设未知数:一般可以直接设未知数,即最后问题问什么就直接设其为未知数,也可以间接设未知数。列出方程组:根据题目中表示全部含义的等量关系,列出方程,并组成方
3、程组。解方程组:解所列方程组,检测方程组解的合理性 答:回答题目的提问。第二章 整式的乘法一、整式的乘法 1.同底数幂的乘法:a m a n = a m+n同底数幂相乘,底数不变。 2.幂的乘方:(a m) n = a m n幂的乘方,底数不变,指数相乘。 3.积的乘方:(ab) n = a nb n积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 4.单项式的乘法:一般地,对于两个或两个以上的单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。 5.单项式与多项式相乘:m (a + b + c) = am + bm + c
4、m先用单项式乘多项式中的每一项,再把所得的积相加。 6.多项式与多项式相乘:(a + b) (m + n) = a ( m + n) + b (m + n) = am + an + bm + bn先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。二、乘法公式 1.平方差公式: (a + b) (ab) = a2b2两个数的和与这两个数的差的积等于这两个数的平方差。 2.完全平方公式:(a + b)2 = a2 + 2ab + b2 (ab)2 = a22ab + b2 两个数和(差)的平方,等于它们的平方和,加(减)它们的积的2倍。 3.运用乘法公式计算:首先观察式子特征,是
5、否整体或者部分可以使用乘法公式,然后将式子进行分类,能运用公式的与不能运用公式的分开,最后计算。第三章 因式分解一、多项式的因式分解 1.概念:f = gh一般地,把一个多项式表示成若干个多项式的乘积的形式,成为把这个多项式因式分解。 2.因式分解与整式乘法的关系:互逆恒等变形。(a + b) (m + n) = am + an + bm + bn 整式乘法am + an + bm + bn = (a + b) (m + n) 因式分解二、提公因式法 1.公因式:几个多项式的公共的因式。 公因式三部分:公因式系数、相同字母、相同字母的最低次幂。 2.提公因式法:一个多项式的各项有公因式,把这个
展开阅读全文