书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型人教版最新高考数学总复习之(立体几何好题难题集萃)及参考答案.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5507994
  • 上传时间:2023-04-23
  • 格式:DOC
  • 页数:18
  • 大小:399.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教版最新高考数学总复习之(立体几何好题难题集萃)及参考答案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    立体几何好题难题集萃 人教版 最新 高考 数学 复习 立体几何 难题 参考答案 下载 _其它资料_高考专区_数学_高中
    资源描述:

    1、教学资料参考参考范本人教版最新高考数学总复习之【立体几何好题难题集萃】及参考答案_年_月_日_部门(附参考答案)浙江理(14)(安徽卷)理科数学(16)多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A在平面内,其余顶点在的同侧,正方体上与顶点A相邻的三个顶点到的距离分别为1,2和4,P是正方体的其余四个顶点中的一个,则P到平面的距离可能是:3; 4; 5; 6; 7以上结论正确的为_。(写出所有正确结论的编号)解:如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5

    2、;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选。3. 过平行六面体任意两条棱的中点作直线, 其中与平面平行的直线共有D A4条 B6条 C8条 D12条4、若是平面外一点,则下列命题正确的是D(A)过只能作一条直线与平面相交 (B)过可作无数条直线与平面垂直(C)过只能作一条直线与平面平行 (D)过可作无数条直线与平面平行【说明】过一点作已知平面的垂线有且只有一条(唯一性)过平面外一点可作无数直线与已知平面平行(存在性)(浙江文)(17)如图,在四棱锥P-ABCD中,底面为直角梯形,AD

    3、BC,BAD=90,PA底面ABCD,且PAAD=AB=2BC,M、N分别为PC、PB的中点.()求证:PBDM; ()(文)求BD与平面ADMN所成的角。(理) 求CD与平面ADMN所成的角解:方法一: ()(文)连结DN, 因为PB平面ADMN,所以BDN是BD与平面ADMN所成的角. 在中, 故BD与平面ADMN所成的角是.方法二: 如图,以A为坐标原点建立空间直角坐标系,设BC=1,则 ()因为 所以PBAD. 又PBDM. 因此的余角即是BD与平面ADMN.所成的角. 因为 所以= 因此BD与平面ADMN所成的角为. (理) (II)取的中点,连结、,则,所以与平面所成的角和与平面所

    4、成的角相等.因为平面,所以是与平面所成的角.在中,.故与平面所成的角是.方法二:如图,以为坐标原点建立空间直角坐标系,设,则.(II) 因为,所以,又因为,所以平面因此的余角即是与平面所成的角.因为,所以与平面所成的角为.18、如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为1,M是底面BC边上的中点,N是侧棱CC1上的点,且CN2C1N.()求二面角B1AMN的平面角的余弦值;()求点B1到平面AMN的距离。解法1:()因为M是底面BC边上的中点,所以AMBC,又AMC,所以AM面BC,从而AMM, AMNM,所以MN为二面角,AMN的平面角。又M=,MN=,连N,得N,在MN中

    5、,由余弦定理得。故所求二面角AMN的平面角的余弦值为。()过在面内作直线,为垂足。又平面,所以AMH。于是H平面AMN,故H即为到平面AMN的距离。在中,HM。故点到平面AMN的距离为1。解法2:()建立如图所示的空间直角坐标系,则(0,0,1),M(0,0),C(0,1,0), N (0,1,) , A (),所以,,。因为所以,同法可得。故为二面角AMN的平面角故所求二面角AMN的平面角的余弦值为。()设n=(x,y,z)为平面AMN的一个法向量,则由得 故可取设与n的夹角为a,则。所以到平面AMN的距离为。(17)(本小题共14分)如图,在底面为平行四边形的四棱锥中,平面,且,点是的中点

    6、.()求证:;()求证:平面;()求二面角的大小.解:(1)由平面可得PAAC又,所以AC平面PAB,所以(2)如图,连BD交AC于点O,连EO,则EO是PDB的中位线,EOPBPB平面(3)如图,取AD的中点F,连EF,FO,则EF是PAD的中位线,EFPA又平面,EF平面同理FO是ADC的中位线,FOABFOAC由三垂线定理可知EOF是二面角EACD的平面角.又FOABPAEFEOF45而二面角与二面角EACD互补,故所求二面角的大小为135.(19)(本小题满分14分,第一小问满分4分,第二小问满分5分,第三小问满分5分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足

    7、AE:EBCF:FACP:PB1:2(如图1)。将AEF沿EF折起到的位置,使二面角A1EFB成直二面角,连结A1B、A1P(如图2)()求证:A1E平面BEP;()求直线A1E与平面A1BP所成角的大小;()求二面角BA1PF的大小(用反三角函数表示)19(06年江苏19分)本小题主要考查线面垂直、直线和平面所成的角、二面角等基础知识,以及空间线面位置关系的证明、角和距离的计算等,考查空间想象能力、逻辑推理能力和运算能力。解法一:不妨设正三角形ABC的边长为3在图3中,过F作FM A1P与M,连结QM,QF,CP=CF=1, C=600,FCP是正三角形,PF=1.有PF=PQ,A1E平面B

    8、EP, A1E=A1Q, A1FPA1QP从而A1PF=A1PQ, 由及MP为公共边知FMPQMP, QMP=FMP=90o,且MF=MQ,从而FMQ为二面角BA1PF的平面角. 在RtA1QP中,A1Q=A1F=2,PQ=1,又. MQA1P在FCQ中,FC=1,QC=2, C=600,由余弦定理得在FMQ中,二面角BA1PF的大小为 06浙江(理)17如图,在四棱锥P-ABCD中,底面为直角梯形,ADBC,BAD=90,PA底面ABCD,且PAAD=AB=2BC,M、N分别为PC、PB的中点.变式1:求面PAB与面PCD所成角利用面积射影或转化为有棱二面角变式2:E为AD中点,求面PAB与

    9、面PCE所成角点面距离06湖南(理)18如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4. ()证明PQ平面ABCD; ()求异面直线AQ与PB所成的角;()求点P到平面QAD的距离.解法一:()连结AC、BD,设.由PABCD与QABCD都是正四棱锥,所以PO平面ABCD,QO平面ABCD.从而P、O、Q三点在一条直线上,所以PQ平面ABCD. (II)由题设知,ABCD是正方形,所以由(I),平面,故可以分别以直线CA、DB、QP为轴,轴,轴建立空间直角坐标系(如上图),由题设条件,相关各点的坐标分别是,所以,于是从而异面直线AQ与PB所成的角是.()由(),点

    10、D的坐标是(0,0),设是平面QAD的一个法向量,由 得.取x=1,得.所以点P到平面QAD的距离.解法二:()取AD的中点M,连结PM,QM.因为PABCD与QABCD都是正四棱锥,所以ADPM,ADQM. 从而AD平面PQM.又平面PQM,所以PQAD.同理PQAB,所以PQ平面ABCD.()连结AC、BD设,由PQ平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.取OC的中点N,连结PN因为,所以,从而AQP.BP(或其补角)是异面直线AQ与PB所成的角.连接BN,因为所以从而异面直线AQ与PB所成的角是()由()知,AD平面PM,所以平面PM平面QAD. 过作于,

    11、则平面QAD,所以的长为点P到平面QAD的距离连结OM,则.所以,又,于是.即点P到平面QAD的距离是.(9)如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是B(A) (B) (C) (D)EF球面距离EOFEF题设条件3.三种问题接切问题、截面问题、折叠问题,非主干知识,考查的频率不高,但它们不会被遗忘1)接切问题往往需要根据图形的对称性,进行空间想象,合情推理,画出合理的截面图例1 06全国()9已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A16 B20 C24 D32

    12、 说明】几个结论:1)正四棱柱的对角线是外接球的直径2)正方体的对角线是外接球的直径3)正方体的棱长是内切球的直径4)若球与正方体的每条棱都相切,则正方体的面对角线是球的直径例2 06江苏9 两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(A)1个(B)2个(C)3个(D)无穷多个两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(A)1个(B)2个(C)3

    13、个(D)无穷多个【思路点拨】本题主要考查空间想象能力,以及正四棱锥的体积【正确解答】由于两个正四棱锥相同,所以所求几何体的中心在正四棱锥底面正方形ABCD中心,有对称性知正四棱锥的高为正方体棱长的一半,影响几何体体积的只能是正四棱锥底面正方形ABCD的面积,问题转化为边长为1的正方形的内接正方形有多少种,所以选D. 2)截面问题难有定式可循,往往难度较大棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截面如图1,则图中三角形(正四面体的截面)的面积是 C A B C D 3)折叠与展开折叠与展开的关键是在折叠与展开的过程中各元素之间位置关系与数量关系是否变化折叠所得立体图形中

    14、元素之间的位置关系,数量关系需要在平面图形中寻找展开所得平面图形中元素之间的位置关系,数量关系需要在立体图形中寻找,展开体现了降维、化归思想(06山东理12题)如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为C(A) (B) (C) (D) (06江西文)15如图,已知正三棱柱的底面边长为1,高为8,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为10解:将正三棱柱沿侧棱CC1展开,其侧面展开图如图所示,由图中路线可得结论。4.四点加强1)加强设问的开放性2)

    15、加强元素的不定性3)加强条件的隐蔽性4)加强知识的综合性1)加强设问的开放性,就是改变以往”从条件到结论的直线思维模式”,增加过程的探索性06辽宁(理)18 (18) (本小题满分12分)已知正方形.、分别是、的中点,将沿折起,如图所示,记二面角的大小为.(I) 证明平面;(II)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值. 2)加强元素形式的不定性,就是增加过程中元素的运动变化,其表现可以语言表达,也可引入参数,这就需要答题者寻求规律、抓住本质.06浙江14:正方体在平面上的射影面积06湖北18:引入参数,点P在CC1上运动06江西15:折叠,P在BC1上

    16、运动,求PCA1P的最小值还有题目中未出现运动迹象,但需要我们用运动变化的思想去解决的.3)加强条件的隐蔽性,就是加强对条件的等价转化06辽宁(理)16若一条直线与一个正四棱柱各个面所成的角都为,则cos=_ 本题转化为正方体06湖北(理)18如图,在棱长为1的正方体ABCDA1B1C1D1中,P是侧棱CC1上的一点,CPm.()在线段A1C1上是否存在一个定点Q, 使得对任意的m, D1Q在平面APD1上的射影垂直于AP, 并证明你的结论。利用三垂线定理转化,问题等价于“在A1C1上是否存在一点Q,使D1QAP”利用逆向思维转化,问题等价于“在A1C1上是否存在一点Q,使D1Q平面ACC1A

    17、1”,故Q是A1C1的中点4)加强知识的综合性在以往立几中有与简易逻辑、组合(概率)、解析几何的综合,今年又增加了与函数,数列、不等式的综合.06广东(理)14在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2、3、4、堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3),f(n);(答案用表示). 立几与数列的综合06山东(理)16如图,已知正方体ABCD- A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.立几与解几的综合06江苏18请您设计一个帐篷。它下部的形状是高h为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大? 立几与函数导数的综合

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版最新高考数学总复习之(立体几何好题难题集萃)及参考答案.doc
    链接地址:https://www.163wenku.com/p-5507994.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库