2020年高一数学上期末试题(及答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年高一数学上期末试题(及答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 数学 上期 试题 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、2020年高一数学上期末试题(及答案)一、选择题1设集合,则( )ABCD2在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,已知函数,则满足的实数的取值范围是( )ABCD3若是的增函数,则的取值范围是( )ABCD4对于函数,在使恒成立的式子中,常数的最小值称为函数的“上界值”,则函数的“上界值”为( )A2B2C1D15已知函数,正实数满足且,若在区间上的最大值为2,则的值分别为A,2B,C,2D,46若二次函数对任意的,且,都有,则实数的取值范围为()ABCD7已知函数,则的图象大致为( )ABCD8下列函数中,既是偶函数,又是在区间上单调递减的函数为( )ABCD9偶函数
2、满足,且当时,若函数有且仅有三个零点,则实数的取值范围是( )ABCD10函数是周期为4的偶函数,当时,,则不等式在上的解集是 ( )ABCD11若不等式对于一切恒成立,则的取值范围为( )ABCD12下列函数中,在区间上为减函数的是ABCD二、填空题13已知,则不等式的解集为_14已知函数(,为常数),若,则的值为_15如果函数是幂函数,且图像不经过原点,则实数_.16已知,其中是方程的解,是方程的解,如果关于的方程的所有解分别为,记,则_17如图,矩形的三个顶点分别在函数,的图像上,且矩形的边分别平行于两坐标轴.若点的纵坐标为2,则点的坐标为_.18若点在幂函数的图像上,则函数的反函数=_
3、.19某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数)若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.20若存在实数,使得时,函数的值域也为,其中且,则实数的取值范围是_.三、解答题21已知函数.(1)判断函数的奇偶性;(2)若,求实数的取值范围.22已知函数.(1)当时,求该函数的值域;(2)求在区间()上的最小值.23已知全集,集合.()若,求; (),求实数a的取值范围.24已知函数是二次函数,.(1)求的解析式;(2)函数在上连续不断,试探究,是否存在,函数在区间内存在零点,若存在,
4、求出一个符合题意的,若不存在,请说明由.25义域为的函数满足:对任意实数x,y均有,且,又当时,.(1)求的值,并证明:当时,;(2)若不等式对任意恒成立,求实数的取值范围.26若是奇函数.(1)求的值;(2)若对任意都有,求实数m的取值范围.【参考答案】*试卷处理标记,请不要删除一、选择题1B解析:B【解析】【分析】先化简集合A,B,再求得解.【详解】由题得,.所以.故选B【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.2C解析:C【解析】当时,;当时,;所以,易知,在单调递增,在单调递增,且时,时,则在上单调递增,
5、所以得:,解得,故选C点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定义域和单调性的双重要求,则,解得答案3A解析:A【解析】【分析】利用函数是上的增函数,保证每支都是增函数,还要使得两支函数在分界点处的函数值大小,即,然后列不等式可解出实数的取值范围【详解】由于函数是的增函数,则函数在上是增函数,所以,即;且有,即,得,因此,实数的取值范围是,故选A.【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点:(1)确保每支函数的单调性和原函数的单调性一致;(2)结合图象确保各支函数在分界点处函数值的大小关系4C解析:
6、C【解析】【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”.【详解】令 则 故函数的“上界值”是1;故选C【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.5A解析:A【解析】试题分析:画出函数图像,因为正实数满足且,且在区间上的最大值为2,所以=2,由解得,即的值分别为,2故选A考点:本题主要考查对数函数的图象和性质点评:基础题,数形结合,画出函数图像,分析建立m,n的方程6A解析:A【解析】【分析】由已知可知,在上单调递减,结合二次函数的开口方向及对称轴的位置即可求解
7、【详解】二次函数对任意的,且,都有,在上单调递减,对称轴,解可得,故选A【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.7C解析:C【解析】【分析】【详解】因为函数,可得是偶函数,图象关于 轴对称,排除 ;又时,,所以,排除 ,故选C.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将
8、不合题意的选项一一排除.8A解析:A【解析】本题考察函数的单调性与奇偶性由函数的奇偶性定义易得,是偶函数,是奇函数是周期为的周期函数,单调区间为时,变形为,由于21,所以在区间上单调递增时,变形为,可看成的复合,易知为增函数,为减函数,所以在区间上单调递减的函数故选择A9D解析:D【解析】试题分析:由,可知函数图像关于对称,又因为为偶函数,所以函数图像关于轴对称.所以函数的周期为2,要使函数有且仅有三个零点,即函数和函数图形有且只有3个交点.由数形结合分析可知,故正确.考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通
9、过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解10C解析:C【解析】若,则此时是偶函数, 即 若 ,则 函数的周期是4, 即 ,作出函数在 上图象如图,若,则不等式 等价为 ,此时 若 ,则不等式等价为 ,此时 ,综上不等式 在 上的解集为故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键11C解析:C【解析】【分析】【详解】对于一切成立,则等价为a对于一切x(0,)成立,即ax对于一切x(0,)成立,设y
展开阅读全文