2019年高考北京市理科数学卷(附答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年高考北京市理科数学卷(附答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 北京市 理科 数学 答案 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、学校:_ _年_班 姓名:_ 学号:_- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密本科目启用前2019年普通高等学校招生全国统一考试数 学(理) (北京卷)本试卷满分150分。考试时长150分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知复数z=2+i,则(A)(B)(C)3(D)(2)执行如图所示的程序框图,输出的s值为 (A)1(B)2(
2、C)3(D)4(3)已知直线l的参数方程为 (t为参数),则点(1,0) 到直线l的距离是(A) (B) (C) (D) (4)已知椭圆(ab0)的离心率为,则(A)a2=2b2(B)3a2=4b2(C)a=2b(D)3a=4b(5)若x,y满足,且y1,则3x+y的最大值为(A)7(B)1(C)5 (D)7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述。两颗星的星等与亮度满足,其中星等为的星的亮度为()。已知太阳的星等为-26.7,天狼星的星等为-1.45,则太阳与天狼星的亮度的比值为(A) (B) (C) (D)(7)设点不共线,则“与的夹角是锐角”是“”的(A)充分而不必要条件
3、(B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图)。给出下列三个结论: 曲线恰好经过6个整点(即横、纵坐标均为整数的点); 曲线上任意一点到原点的距离都不超过; 曲线所围城的“心形”区域的面积小于3.其中,所有正确结论的序号是(A) (B) (C) (D)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。(9) 函数的最小正周期是 _。(10) 设等差数列an的前n项和为Sn,若a2=-3,S5=-10,则a3= _ . Sn 的最小值为_。 (11) 某几何体是由一个正方体去掉一个四棱
4、柱所得,其三视图如图所示。如果网格纸上小正方形的边长为1,那么该几何体的体积为_。(12) 已知l、m是平面a外的两条不同直线.给出下列三个论断:lm; ma; la以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: _ 。(13) 设函数 (a为常数),若f(x)为奇函数,则a=_; 若f(x)是R上的增函数,则a的取值范围是 _。(14) 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃。价格依次为60元/盒、65元/盒、80元/盒、90元/盒,为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上
5、支付成功后,李明会得到支付款的80%。 当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 _ 元: 在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_ 。三、解答题共6小题,共80分。解答应写出文字说明、演算步骤或证明过程。(15)(本小题13分)在ABC中,a=3,bc=2,cosB=()求b,c的值;()求sin(BC)的值(16)(本小题14分)如图,在四棱锥PABCD中,PA平面ABCD,ADCD,ADBC,PA=AD=CD=2,BC=3E为PD的中点,点F在PC上,且()求证:CD平面PAD;()求二面角FAEP的余弦值;()设点G在PB上,且判
6、断直线AG是否在平面AEF内,说明理由(17)(本小题13分)改革开放以来,人们的支付方式发生了巨大转变近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1000(1000,2000大于2000仅使用A18人9人3人仅使用B10人14人1人()从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;()从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金
7、额大于1000元的人数,求X的分布列和数学期望;()已知上个月样本学生的支付方式在本月没有变化现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由(18)(本小题14分)已知抛物线C:x2=2py经过点(2,1)()求抛物线C的方程及其准线方程;()设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=1分别交直线OM,ON于点A和点B求证:以AB为直径的圆经过y轴上的两个定点(19)(本小题13分)已知函数()求曲线的斜率为1的切线方程;()当时,求证
展开阅读全文