八年级数学-全等三角形复习课件(高效1)-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级数学-全等三角形复习课件(高效1)-.ppt》由用户(清风明月心)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 全等 三角形 复习 课件 高效 下载 _其它资料_数学_初中
- 资源描述:
-
1、全等三角形的复习全等三角形的复习 第十二章第十二章一、全等三角形一、全等三角形1.1.什么是全等三角形?一个三角形经过什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?哪些变化可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?能够完全重合的两个三角形叫做全等三角形。能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到一个三角形经过平移、翻折、旋转可以得到它的全等形。它的全等形。(1)全等三角形的对应边相等、对应角相等。)全等三角形的对应边相等、对应角相等。(2)全等三角形的周长相等、面积相等。)全等三角形的周长相等、面积相等。(3)全
2、等三角形的对应边上的对应中线、角平分线、)全等三角形的对应边上的对应中线、角平分线、高线分别相等。高线分别相等。知识回顾:知识回顾:一般三角形一般三角形 全等的条件全等的条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS.5.AAS.直角三角形直角三角形 全等全等特有特有的条件:的条件:HL.HL.包括直角三角形包括直角三角形不包括其它形不包括其它形状的三角形状的三角形解题解题中常中常用的用的4 4种种方法方法三角形全等的判定方法:三角形全等的判定方法:边边边:边边边:三边对应相等的两个三角形全等(三边对应相等的两个三角形
3、全等(可简写成可简写成“SSSSSS”)边角边边角边:两边两边和和它们的夹角对应相等两个三角形全等它们的夹角对应相等两个三角形全等(可简写成可简写成“SAS”)角边角角边角:两角和它们的夹边对应相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等(可简写成可简写成“ASA”)角角边角角边:两角和其中一角的对边对应相等的两个三角形全两角和其中一角的对边对应相等的两个三角形全等(等(可简写成可简写成“AAS”)斜边斜边.直角边:直角边:斜边和一条直角边对应相等的两个直角三斜边和一条直角边对应相等的两个直角三角形全等(可简写成角形全等(可简写成“HLHL”)方法指引证明两个三角形全等的基本思
4、路:证明两个三角形全等的基本思路:(1):已知两边):已知两边-找第三边找第三边(SSS)找夹角找夹角(SAS)(2):已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角(HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角(AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3):已知两角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)二、全等三角形识别思路复习二、全等三角形识别思路复习
5、 如图,已知如图,已知ABC和和DCB中,中,AB=DC,请补充一,请补充一个条件个条件-,使,使ABC DCB。思路思路1:找夹角找夹角找第三边找第三边找直角找直角已知两边:已知两边:ABC=DCB(SAS)AC=DB(SSS)A=D=90(HL)ABCD 如图,已知如图,已知C=D,要识别,要识别ABC ABD,需要添加的一个条件是需要添加的一个条件是-。思路思路2:找任一角找任一角已知一边一角已知一边一角(边与角相对)(边与角相对)(AAS)CAB=DAB或者或者 CBA=DBAACBD 如图,已知如图,已知1=2,要识别,要识别ABC CDA,需要添加的一个条件是需要添加的一个条件是-
6、思路思路3:已知一边一角(边与角相邻):已知一边一角(边与角相邻):ABCD21找夹这个角的另一边找夹这个角的另一边找夹这条边的另一角找夹这条边的另一角找边的对角找边的对角AD=CBACD=CABD=B(SAS)(ASA)(AAS)如图,已知如图,已知B=E,要识别,要识别ABC AED,需要添加的一个条件是需要添加的一个条件是-思路思路4:已知两角:已知两角:找夹边找夹边找一角的对边找一角的对边ABCDEAB=AEAC=AD或或 DE=BC(ASA)(AAS)角的内部到角的两边的距离相等的点角的内部到角的两边的距离相等的点在角的平分线上。在角的平分线上。QDOA,QEOB,QDQE 点Q在A
7、OB的平分线上角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等.QDOA,QEOB,点Q在AOB的平分线上 QDQE二、角的平分线二、角的平分线1.角平分线的性质:角平分线的性质:2.角平分线的判定:角平分线的判定:2.如图,ABC的角平分线BM,CN相交于点P,求证:点P到三边AB、BC、CA的距离相等BMBM是是ABC的角平分线的角平分线,点点P P在在BMBM上上,ABCPMNDEFPD=PEPD=PE(角平分线上的点到这个角的两边距离相等角平分线上的点到这个角的两边距离相等).).同理同理,PE=PF.,PE=PF.PDPDPE=PF.PE=PF.即点即点P P
展开阅读全文