书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型(完整版)二次根式定义及性质.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5491114
  • 上传时间:2023-04-21
  • 格式:DOC
  • 页数:13
  • 大小:328KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)二次根式定义及性质.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 二次 根式 定义 性质
    资源描述:

    1、二次根式定义及性质教学内容:1.学习目标:理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论:,并利用它们进行计算和化简2.重点:;,及其运用3.难点:利用,解决具体问题.知识点一:二次根式的概念一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号知识点二:二次根式的性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.知识点三:代数式形如5,a,a+b,ab,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression).经典

    2、例题透析类型一:二次根式的概念例1、下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、(x0,y0)思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0解:二次根式有:、(x0)、(x0,y0);不是二次根式的有:、例2、当x是多少时,在实数范围内有意义?思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10,才能有意义解:由3x-10,得:x当x时,在实数范围内有意义总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数举一反三【变式1】x 是怎样的实数时,下列各式实数范围内有意义?(1); (2);解:(1)由0,解得:x取

    3、任意实数 当x取任意实数时,二次根式在实数范围内都有意义.(2)由x-10,且x-10,解得:x1 当x1时,二次根式在实数范围内都有意义.【变式2】当x是多少时,+在实数范围内有意义?思路点拨:要使+在实数范围内有意义, 必须同时满足中的2x+30和中的x+10解:依题意,得 由得:x- 由得:x-1 当x-且x-1时,+在实数范围内有意义类型二:二次根式的性质例1、计算:(1) (2) (3) (4) (5)(b0)(6)思路点拨:我们可以直接利用(a0)的结论解题解:(1) (2)=;(3);(4)=;(5);(6)举一反三【变式1】计算:(1);(2);(3); (4).思路点拨:(1

    4、)因为x0,所以x+10; (2)a20; (3)a2+2a+1=(a+1)20;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)20 所以上面的4题都可以运用的重要结论解题解:(1)因为x0,所以x+10;(2)a20,;(3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10,=a2+2a+1;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2 又(2x-3)20 4x2-12x+90,=4x2-12x+9.例2、化简:(1); (2); (3); (4).思路点拨:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3

    5、)2=32,所以都可运用去化简解:(1)=3; (2)=4;(3)=5;(4)=3.例3、填空:当a0时,=_;当a0时,=_,并根据这一性质回答下列问题(1)若=a,则a可以是什么数?(2)若=-a,则a可以是什么数?(3)a,则a可以是什么数?思路点拨:=a(a0),要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a0时,=,那么-a0(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知,而要大于a,只有什么时候才能保证呢?解:(1)因为,所以a0;(2)因为,所以a0;(3)因为当a0时,要使,即使aa所以a

    6、不存在;当a0时, 要使,即使-aa,即a0;综上,a0.类型三:二次根式性质的应用例1、当x=-4时,求二次根式的值.思路点拨:二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同.解:将x=-4代入二次根式,得=.例2、(1)已知y=+5,求的值(2)若+=0,求的值解:(1)由可得,(2) 例3、在实数范围内分解因式:(1)x2-5; (2)x3-2x; 解:(1)原式 . (2)原式.学习成果测评基础达标一、选择题1.下列式子中,不是二次根式的是( )A B C D2.已知一个正方形的面积是5,那么它的边长是( )A5 B C D以上皆不对3.(福建省福州市)若代数式在实数

    7、范围内有意义,则x的取值范围为( ) Ax0 Bx0 Cx 0 Dx0且x 14的值是( ) A0 B C4 D以上都不对5a0时,、,比较它们的结果,下面四个选项中正确的是( )A BC D6.(辽宁省大连市) 如图,数轴上点N表示的数可能是() ABC D二、填空题1.若,则 x = _.2.若有意义,则的取值范围是_.3-=_4.=_. 5.=_. 6.若,则_.7.若,则_;若,则_.8.化简:=_.9. 计算:(1)=_; (2)=_; (3) =_。10.(内蒙古鄂尔多斯市)如图,在数轴上,A、B两点之间表示整数的点有_个三、解答题1. 求下列二次根式中字母a的取值范围:(1),

    8、(2); (3).2.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?能力提升一、选择题1.使式子有意义的未知数x有( )个A0 B1 C2 D无数2.(山西省临汾市) 若,则与3的大小关系是( ) A B C D3.下列计算正确的是( ) A B C D4.(福建省厦门市) 下列四个结论中,正确的是( ) A. B. C. D. 二、填空题1.若,则_.2若是一个正整数,则正整数m的最小值是_3.已知实数在数轴上的对应点如图所示,则_. 三、解答题1.当x是多少时,+x2在实数范围内有意义?2.若+有意义,求的值.3.(北京市海淀

    9、区) 已知实数x,y满足,求代数式的值.4.已知,求x+y的值.综合探究1.(福建省南安市) 观察分析下列数据,寻找规律:0,3,2,3,那么第10个数据应是_.2.(江苏省苏州市)等式中的括号应填入_.3先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的解答为:原式=a+=a+(1-a)=1; 乙的解答为:原式=a+=a+(a-1)=2a-1=17两种解答中,_的解答是错误的,错误的原因是_4. 若时,试化简.5在实数范围内分解下列因式:(1); (2). 二次根式定义及性质测试题一、复习1、什么叫平方根?开平方? 2、平方根如何表示?3、求下列各数的平方根: 4、求下列各数的

    10、正平方根:(1)4; (2)0.16; (3). (1)225; (2)0.0001; (3).二、二次根式的意义1. 二次根式的意义代数式_叫做二次根式,读作_,其中_是被开方数. 通常把形如_的式子也叫做二次根式.2二次根式何时有意义二次根式有意义的条件是_.3. 例题例题1 下列各式是二次根式吗?、 、.例题2 设x是实数,当x 满足什么条件时,下列各式有意义?(1); (2); (3); (4).4练习(一)设x是实数,当x 满足什么条件时,下列各式有意义?(1); (2); (3).三、二次根式的性质性质1:_; 性质2:_; 性质3:_; 性质4:_.例题3 求下列二次根式的值:(

    11、1); (2),其中.例题4 化简二次根式(1);(2);(3);(4);(5);(6)例题5 设a、b、c分别是三角形三边的长,化简:练习(二):1、化简下列二次根式(1); (2); (3);(4); (5); (6)62、选择题(1)、实数a、b在数轴上对应的位置如图,则( )ab01A、b-a B、2-a-b C、a-b D、2+a-b(2)、化简的结果是( )A、 B、 C、 D、(3)、如果,那么x的取值范围是( )A、1x2 B、1x2 C、x2 D、x2最简二次根式和同类二次根式1、最简二次根式符合的两个条件:(1)_;(2)_.例题6 判断下列二次根式是不是最简二次根式:(1);(2);(3);(4)例题7 将下列二次根式化成最简二次根式:(1);(2);(3)2、练习(三)(1)判断下列二次根式中,哪些是最简二次根式:(2)找出下列二次根式中的非最简二次根式,并把它们化成最简二次根式:(3)将下列各二次根式化成最简二次根式:3、同类二次根式几个二次根式化成_后,如果_相同,那么这几个二次根式叫做同类二次根式.例题8 下列二次根式中,哪些是同类二次根式?例题9 合并下列各式中的同类二次根式:(1); (2)4、练习(四)(1)判断下列各组中的二次根式是不是同类二次根式:A. B. C.(2)合并下列各式中的同类二次根式:A. B.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)二次根式定义及性质.doc
    链接地址:https://www.163wenku.com/p-5491114.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库