(完整版)三角函数最全知识点总结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)三角函数最全知识点总结.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 三角函数 知识点 总结
- 资源描述:
-
1、三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角正角:按_逆时针_方向旋转形成的角负角:按_顺时针_方向旋转形成的角零角:如果一条射线_没有作任何旋转_,我们称它形成了一个零角(2)终边相同角:与终边相同的角可表示为:|2k,kZ,或|k360,kZ(3)象限角:角的终边落在_第几象限_就称为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角轴线角2弧度制(1)1度的角:_把圆周分成360份,每一份所对的圆心角叫1的角_.(2)1弧度的角:_弧长等于半径的圆弧所对的圆心角叫1弧度的角_.(3)角度与弧度的
2、换算:360_2_rad,1_rad,1rad(_)5718.(4)若扇形的半径为r,圆心角的弧度数为,则此扇形的弧长l_|r_,面积S_|r2_lr_.3任意角的三角函数定义(1)设是一个任意角,的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sin_,cos_,tan_.(2)三角函数在各象限的符号是:sincostan_记忆口诀:一全正,二正弦,三正切,四余弦(3)三角函数线可以看作是三角函数的几何表示正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0)如图中有向线段MP,OM,AT分别叫做角的_正弦_线、_余弦_线和_正切_线4终边相同的角的三
3、角函数sin(k2)_sin_,cos(k2)_cos_,tan(k2)_tan_(其中kZ),即终边相同的角的同一三角函数的值相等重要结论1终边相同的角不一定相等,相等角的终边一定相同,在书写与角终边相同的角时,单位必须一致2确定(kN*)的终边位置的方法(1)讨论法:用终边相同角的形式表示出角的范围写出的范围根据k的可能取值讨论确定的终边所在位置(2)等分象限角的方法:已知角是第m(m1,2,3,4)象限角,求是第几象限角等分:将每个象限分成k等份标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴选答:出现数字m的区域,即为所在的象限如判断象限问题可采用等
4、分象限法二、同角三角函数的基本关系式与诱导公式 1同角三角函数的基本关系式(1)平方关系:_sin2xcos2x1_. (2)商数关系:_tanx_.2三角函数的诱导公式组数一二三四五六角2k(kZ)正弦sin_sin_sin_sin_cos_cos_余弦cos_cos_cos_cos_sin_sin_正切tan_tan_tan_tan_重要结论1同角三角函数基本关系式的变形应用:如sinxtanxcosx,tan2x1,(sinxcosx)212sinxcosx等2特殊角的三角函数值表角030456090120150180270角的弧度数0sin0101cos1010tan0103.诱导公式
5、的记忆口诀“奇变偶不变,符号看象限”“奇”与“偶”指的是诱导公式k中的整数k是奇数还是偶数“变”与“不变”是指函数的名称的变化,若k是奇数,则正、余弦互变;若k为偶数,则函数名称不变“符号看象限”指的是在k中,将看成锐角时k所在的象限4.sinxcosx、sinxcosx、sinxcosx之间的关系sinxcosx、sinxcosx、sinxcosx之间的关系为(sinxcosx)212sinxcosx,(sinxcosx)212sinxcosx,(sinxcosx)2(sinxcosx)22.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值三、两角和与差的三角函数二倍角
展开阅读全文